Solutions to Quiz 2

1. Let \mathbb{C}^{∞} , \mathcal{C}_0 and \mathcal{C} denote the usual spaces of sequences with the norm $\|\cdot\|_{\infty}$. Define a linear functional:

$$f: \mathbb{C}^{\infty} \to \mathbb{C}$$
 by $f((a_n)) = \sum_{n=1}^{\infty} \frac{a_n}{2^n}$

(1 mark) (a) What is the norm of f?

Solution: If $\sup_n |a_n| = \alpha$, then

$$|f((a_n))| \le \sum_{n=1}^{\infty} \frac{\alpha}{2^n} = \alpha$$

So $||f|| \leq 1$. On the other hand, if we take $a^{(n)} = (1, \dots, \check{1}, 0, \dots)$, then $||a^{(n)}|| = 1$ and $f(a^{(n)}) = \sum_{k=1}^{n} 1/2^k$. So

$$\|f\| \ge \sum_{k=1}^{n} \frac{1}{2^k}$$

for all n. It follows that ||f|| = 1.

(2 marks) (b) Let g be a continuous extension of f to C_0 . What is g(b) where b = (1, 1/2, 1/3, ...)?

Solution: The sequence $b^{(n)} = (1, 1/2, ..., 1/n, 0, ...)$ consists of elements of \mathbb{C}^{∞} which converge to b in $\|\cdot\|_{\infty}$.

Since g is continuous g(b) is the limit of $g(b^{(n)})$. This shows that

$$g(b) = \sum_{n=1}^{\infty} \frac{1}{n2^n} = -\log(1 - 1/2) = \log(2)$$

(2 marks)

(c) Let h be a continuous extension of f to C. What is h(c) where c = (1, 1, 1, ...)?

Solution: Since C_0 is closed in C and $C = C_0 + \mathbb{C} \cdot c$, we have:

- 1. A continuous map $\pi : \mathcal{C} \to \mathcal{C}_0$ such that $\pi(c) = 0$ and $\pi(a) = a$ for $a \in \mathcal{C}_0$.
- 2. A continuous map $t : \mathcal{C} \to \mathbb{C}$ so that t(c) = 1 and $t(\mathcal{C}_0) = \{0\}$.

More explicitly, we can take $t(a) = \lim_{n \to \infty} a_n$ (Check that this is continuous!) and $\pi(a) = b$ where b is the sequence $(a_n - t(a))$ (Check that this is continuous!).

MTH402

Thus, for any complex number z we can take $h = g \circ \pi + z \cdot t$. Then h(a) = g(a) for $a \in C_0$ and h(c) = z. So there is no well-defined unique extension of g.