Solutions to Quiz 2

1. Let $\mathbb{C}^{\infty}, \mathcal{C}_{0}$ and \mathcal{C} denote the usual spaces of sequences with the norm $\|\cdot\|_{\infty}$. Define a linear functional:

$$
f: \mathbb{C}^{\infty} \rightarrow \mathbb{C} \text { by } f\left(\left(a_{n}\right)\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}
$$

(1 mark) (a) What is the norm of f ?
Solution: If $\sup _{n}\left|a_{n}\right|=\alpha$, then

$$
\left|f\left(\left(a_{n}\right)\right)\right| \leq \sum_{n=1}^{\infty} \frac{\alpha}{2^{n}}=\alpha
$$

So $\|f\| \leq 1$. On the other hand, if we take $a^{(n)}=(1, \ldots, \stackrel{n}{1}, 0, \ldots)$, then $\left\|a^{(n)}\right\|=$ 1 and $f\left(a^{(n)}\right)=\sum_{k=1}^{n} 1 / 2^{k}$. So

$$
\|f\| \geq \sum_{k=1}^{n} \frac{1}{2^{k}}
$$

for all n. It follows that $\|f\|=1$.
(b) Let g be a continuous extension of f to \mathcal{C}_{0}. What is $g(b)$ where $b=(1,1 / 2,1 / 3, \ldots)$?

Solution: The sequence $b^{(n)}=(1,1 / 2, \ldots, 1 / n, 0, \ldots)$ consists of elements of \mathbb{C}^{∞} which converge to b in $\|\cdot\|_{\infty}$.
Since g is continuous $g(b)$ is the limit of $g\left(b^{(n)}\right)$. This shows that

$$
g(b)=\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}=-\log (1-1 / 2)=\log (2)
$$

(c) Let h be a continuous extension of f to \mathcal{C}. What is $h(c)$ where $c=(1,1,1, \ldots)$?

Solution: Since \mathcal{C}_{0} is closed in \mathcal{C} and $\mathcal{C}=\mathcal{C}_{0}+\mathbb{C} \cdot c$, we have:

1. A continuous map $\pi: \mathcal{C} \rightarrow \mathcal{C}_{0}$ such that $\pi(c)=0$ and $\pi(a)=a$ for $a \in \mathcal{C}_{0}$.
2. A continuous map $t: \mathcal{C} \rightarrow \mathbb{C}$ so that $t(c)=1$ and $t\left(\mathcal{C}_{0}\right)=\{0\}$.

More explicitly, we can take $t(a)=\lim _{n \rightarrow \infty} a_{n}$ (Check that this is continuous!) and $\pi(a)=b$ where b is the sequence $\left(a_{n}-t(a)\right)$ (Check that this is continuous!).

Thus, for any complex number z we can take $h=g \circ \pi+z \cdot t$. Then $h(a)=g(a)$ for $a \in \mathcal{C}_{0}$ and $h(c)=z$. So there is no well-defined unique extension of g.

