Solutions to Quiz 1

- 1. Let C_0 , C, ℓ_1 and ℓ_{∞} denote the usual spaces of sequences. Give examples of each of the following:
- (1 mark) (a) An element of C_0 which is not in ℓ_1 .

Solution: The sequence (1, 1/2, 1/3, ...) converges to 0 but is not absolutely summable.

(1 mark) (b) An element of \mathcal{C} which is not in \mathcal{C}_0 .

Solution: The sequence (1, 1, 1, ...) converges to 1.

(1 mark) (c) An element of ℓ_{∞} which is not in \mathcal{C} .

Solution: The sequence (1, -1, 1, -1, ...) is bounded but does not converge.

(2 marks) (d) Elements $a^{(n)}$ of C_0 for n = 1, 2, ... so that $a_k^{(n)}$ is Cauchy for each fixed k but the sequence of elements is not Cauchy in C_0 .

Solution: We take $a^{(n)} = (0, \ldots, 0, \check{1}, 0, \ldots)$ which has 0 in all places except 1 in the *n*-th place. The sequences $a_k^{(n)}$ for a fixed k consist of 0's for n > k and so are Cauchy. However, $||a^{(n)} - a^{(m)}|| = 2$ whenever $n \neq m$. So the sequence is not Cauchy in C_0 .