Hilbert Spaces

An inner product space V carries a natural norm induced by its inner product. We say that V is a *Hilbert space* if V is complete with respect to this norm.

As seen earlier, \mathbb{R}^n carries a natural inner product and is complete with respect to the induced norm. So it is a Hilbert space. More generally, we saw that any finite dimensional inner product space can be identified with \mathbb{R}^n and its natural inner product. Thus, such a space is automatically complete. The primary object of our study is therefore infinite dimensional spaces.

As shown earlier, any normed space V can be embedded in its completion \overline{V} . A continuous linear functional on V extends to \overline{V} in a unique way as a continuous linear functional there. Moreover, a continuous linear functional on \overline{V} is uniquely determined by its restriction to the *dense* subspace V. In other words, the restriction map $B(\overline{V}, \mathbb{R}) \to B(V, \mathbb{R})$ is an isomorphism.

Exercise: For any continuous linear functional f on \overline{V} , show that

$$||f|| = \{|f(v)| : v \in V \text{ and } |v| \le 1\}$$

(Hint: Show that if v_n is a Cauchy sequence in V that converges to w in \overline{V} , then there is a Cauchy sequence w_n in V converging to w such that $||w_n|| \le ||w||$.)

As shown earlier, the normed space B(V, W) is complete with the operator norm whenever W is complete. Thus, $B(V, \mathbb{R})$ is a complete normed space.

For an inner product space V we have shown the Cauchy-Schwarz inequality:

$$|\langle v, w \rangle| \le \|v\| \|w\|$$

Exercise: Show that the function $f_w : V \to \mathbb{R}$ defined by $f_w(v) = \langle v, w \rangle$ is continuous with respect to the norm induced by the inner product. Moreover, the "operator norm" $||f_w||$ satisfies $||f_w|| = ||w||$.

We thus get a natural map $f: V \to B(V, \mathbb{R})$ given by $v \mapsto f_v$ which preserves the norm.

Since \overline{V} is the completion of V, we get a natural extension of this map to $g: \overline{V} \to B(V, \mathbb{R})$ which also preserves the norm. It follows that g is 1-1. Since $B(V, \mathbb{R}) = B(\overline{V}, \mathbb{R})$ it follows that for every pair of vectors a and b in \overline{V} , we can define [a, b] = g(b)(a).

We see easily that the pairing [,] is bi-linear. Moreover, if v_n is a Cauchy sequence in V that converges to a and w_n is a Cauchy sequence in V that converges to b, then

$$g(b)(a) = \lim_{n \to \infty} g(b)(v_n) = \lim_{n \to \infty} g(w_n)(a)$$

The first equality follows from the continuity of g(b) and then the second equality follows from the continuity of g. Now, $g(w_n) = f(w_n)$, since g restricts to f on

V. By the continuity of $f(w_n)$ we have

$$f(w_n)(a) = \lim_{k \to \infty} f(w_n)(v_k)$$

By definition $f(w_n)(v_k) = \langle v_k, w_n \rangle$. It follows that

$$f(w_n)(v_k) = \langle v_k, w_n \rangle = \rangle w_n, v_k \rangle = f(v_k)(w_n) = g(v_k)(w_n)$$

Taking the limit as k goes to infinity we have

$$f(w_n)(a) = \lim_{k \to \infty} f(w_n)(v_k) = \lim_{k \to \infty} g(v_k)(w_n) = g(a)(w_n)$$

Now, take the limit as n goes to infinity to obtain

$$g(b)(a) = \lim_{n \to \infty} g(w_n)(a) = \lim_{n \to \infty} f(w_n)(a) = \lim_{n \to \infty} g(a)(w_n) = g(a)(b)$$

Thus, we see that [,] on \overline{V} is symmetric.

Exercise: Show that if [v, v] = 0 for v in \overline{V} , then v = 0. (Hint: If v_n is a sequence in V that converges to v, then show that $[v, v] = \lim n \to \infty \langle v_n, v_n \rangle$.)

Thus [,] is an inner product on \overline{V} . In other words:

The completion of an inner product space is a complete inner product space, i.e. a Hilbert space.

The space ℓ_2 .

One way to "construct" an infinite dimensional space is as follows. Consider the space \mathbb{R}^{∞} of "eventually 0" sequences; a sequence $(a_1, a_2, ...)$ lies in \mathbb{R}^{∞} if there is an n so that $a_k = 0$ for k > n. If we consider \mathbb{R}^n as the subset of \mathbb{R}^{∞} consisting all a so that $a_k = 0$ for k > n, then \mathbb{R}^{∞} is the union of \mathbb{R}^n over all n.

Exercise: Check that \mathbb{R}^{∞} inherits the structure of a vector space over \mathbb{R} from the vector space structure on \mathbb{R}^n .

Given two elements a and b in \mathbb{R}^∞ we can define

$$\langle a, b \rangle = \sum_{k=1}^{\infty} a_k b_k$$

This sum "looks" infinite, but is actually *finite* as there is a common n so that a and b lie in \mathbb{R}^n .

Exercise: Check that this makes \mathbb{R}^{∞} into an inner product space. (Hint: Note that the identities that we need to check involve at most two vectors and both of those lie in \mathbb{R}^n for some common n.)

This induces a norm on \mathbb{R}^{∞} which we denote as $\|\cdot\|_2$. The completion of \mathbb{R}^{∞} with respect to this norm is what we now want to study.

Let H be the space $B((\mathbb{R}^{\infty}, \|\cdot\|_2), \mathbb{R})$ of linear functionals on \mathbb{R}^{∞} that are bounded with respect to the norm $\|\cdot\|_2$. Given a linear functional $h \in H$ it is determined by its sequence of values $h(e^{(n)})$, where $e^{(n)}$ is the standard basis of \mathbb{R}^{∞} . Hence, we can identify H as a subset (in fact, subspace) of the space of sequences. Let $b = (b_n)$ be a sequence in H and h_b denote the linear functional associated with it.

Exercise: For a vector $a = (a_n)$ in \mathbb{R}^{∞} show that $h_b(a) = \sum_{n=1}^{\infty} a_b b_n$. (Note that this sum is a finite sum since $a_n = 0$ for sufficiently large n.)

Since we are given that h_b is a bounded linear functional, there is a positive constant C so that $|h_b(a)| \leq C ||a||_2$ for all a in \mathbb{R}^{∞} . In particular, let is define for each N, a vector $a^{(N)}$ as follows:

$$a_n^{(N)} = \begin{cases} \frac{|b_n|^2}{b_n} & \text{if } b_n \neq 0 \text{ and } n \le N\\ 0 & \text{if } b_n = 0 \text{ or } n > N \end{cases}$$

Exercise: Check that

$$h_b(a^{(N)}) = \sum_{n=1}^N |b_n|^2 = \langle a^{(N)}, a^{(N)} \rangle$$

Now, if b is not the sequence consisting of zeroes, then $a^{(N)}$ is a non-zero vector in \mathbb{R}^{∞} for sufficiently large N. Hence, we can define $v^{(N)} = a^{(N)} / ||a^{(N)}||_2$ as the unit vector along $a^{(N)}$.

Exercise: Check that

$$h_b(v^{(N)}) = (\sum_{n=1}^N |b_n|^2)^{1/2} = ||a^{(N)}, a^{(N)}||_2$$

Since we have $||v^{(N)}||_2 = 1$, the boundedness of h_b gives us $h_b(v^{(N)}) \leq C$. Thus, we see that $\left(\sum_{n=1}^N |b_n|^2\right) \leq C^2$ is bounded independent of N. In other words, we have show that $\sum_{n=1}^\infty |b_n|^2$ is a convergent sum.

The space ℓ_2 consists of sequences $(a_1, \ldots,)$ such that $\sum_{k=1}^{\infty} |a_k|^2$ is finite. We have now shown that H is contained in ℓ_2 .

Exercise: Given any sequence $b = (b_n)$, we can define the linear functional $h_b : \mathbb{R}^\infty \to \mathbb{R}$ by the formula $h_b(a) = \sum_{n=1}^\infty a_b b_n$. (Note that this sum is a finite sum since $a_n = 0$ for sufficiently large n.)

However, this linear functional need not be continuous with respect to a given norm! Now, assume that b is in ℓ_2 and let $C = \sum_{n=1}^{\infty} ||b_N|^2$.

Exercise: For any a in \mathbb{R}^n , show that $|h_b(a)|^2 \leq C ||a||_2^2$. (Hint: Use the Cauchy-Shwarz inequality for \mathbb{R}^n !)

Since \mathbb{R}^{∞} is the *union* of the subspaces \mathbb{R}^n , we see that h_b is a bounded linear function when b is in ℓ_2 . In other words, we have shown that ℓ_2 is contained in H. Thus $H = \ell_2$.

Exercise: By following the above exercises carefully, show that the operator norm $||h_b||$ of h_b is given by $\left(\sum_{n=1}^{\infty} |b_n|^2\right)^{1/2}$.

It is therefore natural to define the norm on ℓ_2 by:

$$\|b\|_2 = \left(\sum_{n=1}^{\infty} |b_n|^2\right)^{1/2}$$

Above, we have shown that the completion of an inner-product space is a contained in its dual space. So, we see that the completion of \mathbb{R}^{∞} is contained in ℓ_2 in a natural way. We will now see that this is an equality. Given any sequence b in ℓ_2 , we define $b^{(n)}$ to be the truncated sequence which consists of 0 beyond the *n*-th co-ordinate.

Exercise: Show that $||b - b^{(N)}||_2^2 = \sum_{n>N} |b_n|^2$.

Exercise: Given $\epsilon > 0$ show that there is an N so that if $n \leq N$, then $\|b - b^{(N)}\| < \epsilon$.

In other words, $b^{(n)}$ is a Cauchy sequence converging to b in ℓ_2 . Moreover, $b^{(n)}$ lies in \mathbb{R}^{∞} . We thus see that \mathbb{R}^{∞} is dense in ℓ_2 . Since we have already seen that completion of \mathbb{R}^{∞} with respect to $\|\cdot\|_2$ is *contained* in ℓ_2 , we obtain equality.

Above, we have shown that the completion of an inner-product space is also an inner-product space. This is one way to prove that ℓ_2 is an inner-product space. However, we can also do this more directly as follows.

Exercise: Given sequences a and b in ℓ_2 , show that

$$\left|\sum_{k=N}^{M} a_k b_k\right|^2 \le \left(\sum_{k=N}^{M} |a_k|^2\right) \left(\sum_{k=N}^{M} |b_k|^2\right)$$

Exercise: Given $\epsilon > 0$ show that there is an N so that for any M we have

$$\left(\sum_{k=N}^{M} |a_k|^2\right) < \epsilon \text{ and } \left(\sum_{k=N}^{M} |b_k|^2\right) < \epsilon$$

(Hint: Use the fact that the sum from k = 1 to infinity converges in each case.) **Exercise**: Show that $\sum_{k=1}^{\infty} a_k b_k$ converges when a and b lie in ℓ_2 . We can thus define a pairing on ℓ_2 by the formula

$$\langle a,b\rangle = \sum_{k=1}^{\infty} a_k b_k$$

Exercise: Check that this is an inner product on ℓ_2 .

We note that, along the way, we have shown that *any* linear functional on \mathbb{R}^{∞} that is continuous with respect to $\|\cdot\|_2$ is given by inner-product with a vector in ℓ_2 . Since \mathbb{R}^{∞} is dense in ℓ_2 , the same holds for a continuous linear functionals on ℓ_2 . In other words, we have shown that $h : \ell_2 \to B(\ell_2, \mathbb{R})$ defined by

$$b \mapsto h_b$$
 where $h_b(a) = \langle a, b \rangle$

is an isomorphism. In fact, as seen above, it also preserves the norm. This is the statement of Riesz representation theorem for ℓ_2 . We will see a different proof in the next section.