
Hilbert Spaces

An inner product space V carries a natural norm induced by its inner product.
We say that V is a Hilbert space if V is complete with respect to this norm.

As seen earlier, Rn carries a natural inner product and is complete with respect
to the induced norm. So it is a Hilbert space. More generally, we saw that any
finite dimensional inner product space can be identified with Rn and its natural
inner product. Thus, such a space is automatically complete. The primary
object of our study is therefore infinite dimensional spaces.

As shown earlier, any normed space V can be embedded in its completion V . A
continuous linear functional on V extends to V in a unique way as a continuous
linear functional there. Moreover, a continuous linear functional on V is uniquely
determined by its restriction to the dense subspace V . In other words, the
restriction map B(V ,R)→ B(V,R) is an isomorphism.

Exercise: For any continuous linear functional f on V , show that

‖f‖ = {|f(v)| : v ∈ V and |v| ≤ 1}

(Hint: Show that if vn is a Cauchy sequence in V that converges to w in V , then
there is a Cauchy sequence wn in V converging to w such that ‖wn‖ ≤ ‖w‖.)

As shown earlier, the normed space B(V,W ) is complete with the operator norm
whenever W is complete. Thus, B(V,R) is a complete normed space.

For an inner product space V we have shown the Cauchy-Schwarz inequality:

|〈v, w〉| ≤ ‖v‖‖w‖

Exercise: Show that the function fw : V → R defined by fw(v) = 〈v, w〉 is
continuous with respect to the norm induced by the inner product. Moreover,
the “operator norm” ‖fw‖ satisfies ‖fw‖ = ‖w‖.

We thus get a natural map f : V → B(V,R) given by v 7→ fv which preserves
the norm.

Since V is the completion of V , we get a natural extension of this map to
g : V → B(V,R) which also preserves the norm. It follows that g is 1-1. Since
B(V,R) = B(V ,R) it follows that for every pair of vectors a and b in V , we can
define [a, b] = g(b)(a).

We see easily that the pairing [, ] is bi-linear. Moreover, if vn is a Cauchy sequence
in V that converges to a and wn is a Cauchy sequence in V that converges to b,
then

g(b)(a) = lim
n→∞

g(b)(vn) = lim
n→∞

g(wn)(a)

The first equality follows from the continuity of g(b) and then the second equality
follows from the continuity of g. Now, g(wn) = f(wn), since g restricts to f on
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V . By the continuity of f(wn) we have

f(wn)(a) = lim
k→∞

f(wn)(vk)

By definition f(wn)(vk) = 〈vk, wn〉. It follows that

f(wn)(vk) = 〈vk, wn〉 =〉wn, vk〉 = f(vk)(wn) = g(vk)(wn)

Taking the limit as k goes to infinity we have

f(wn)(a) = lim
k→∞

f(wn)(vk) = lim
k→∞

g(vk)(wn) = g(a)(wn)

Now, take the limit as n goes to infinity to obtain

g(b)(a) = lim
n→∞

g(wn)(a) = lim
n→∞

f(wn)(a) = lim
n→∞

g(a)(wn) = g(a)(b)

Thus, we see that [, ] on V is symmetric.

Exercise: Show that if [v, v] = 0 for v in V , then v = 0. (Hint: If vn is a
sequence in V that converges to v, then show that [v, v] = limn→∞〈vn, vn〉.)

Thus [, ] is an inner product on V . In other words:

The completion of an inner product space is a complete inner product space, i.e. a
Hilbert space.

The space `2.

One way to “construct” an infinite dimensional space is as follows. Consider
the space R∞ of “eventually 0” sequences; a sequence (a1, a2, . . . ) lies in R∞ if
there is an n so that ak = 0 for k > n. If we consider Rn as the subset of R∞

consisting all a so that ak = 0 for k > n, then R∞ is the union of Rn over all n.

Exercise: Check that R∞ inherits the structure of a vector space over R from
the vector space structure on Rn.

Given two elements a and b in R∞ we can define

〈a, b〉 =
∞∑

k=1
akbk

This sum “looks” infinite, but is actually finite as there is a common n so that a
and b lie in Rn.

Exercise: Check that this makes R∞ into an inner product space. (Hint: Note
that the identities that we need to check involve at most two vectors and both
of those lie in Rn for some common n.)

This induces a norm on R∞ which we denote as ‖·‖2. The completion of R∞

with respect to this norm is what we now want to study.
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LetH be the space B((R∞, ‖·‖2),R) of linear functionals on R∞ that are bounded
with respect to the norm ‖·‖2. Given a linear functional h ∈ H it is determined
by its sequence of values h(e(n)), where e(n) is the standard basis of R∞. Hence,
we can identify H as a subset (in fact, subspace) of the space of sequences. Let
b = (bn) be a sequence in H and hb denote the linear functional associated with
it.

Exercise: For a vector a = (an) in R∞ show that hb(a) =
∑∞

n=1 abbn. (Note
that this sum is a finite sum since an = 0 for sufficiently large n.)

Since we are given that hb is a bounded linear functional, there is a positive
constant C so that |hb(a)| ≤ C‖a‖2 for all a in R∞. In particular, let is define
for each N , a vector a(N) as follows:

a(N)
n =

{
|bn|2

bn
if bn 6= 0 and n ≤ N

0 if bn = 0 or n > N

Exercise: Check that

hb(a(N)) =
N∑

n=1
|bn|2 = 〈a(N), a(N)〉

Now, if b is not the sequence consisting of zeroes, then a(N) is a non-zero vector
in R∞ for sufficiently large N . Hence, we can define v(N) = a(N)/‖a(N)‖2 as the
unit vector along a(N).

Exercise: Check that

hb(v(N)) = (
N∑

n=1
|bn|2)1/2 = ‖a(N), a(N)‖2

Since we have ‖v(N)‖2 = 1, the boundedness of hb gives us hb(v(N)) ≤ C. Thus,
we see that

(∑N
n=1|bn|2

)
≤ C2 is bounded independent of N . In other words,

we have show that
∑∞

n=1|bn|2 is a convergent sum.

The space `2 consists of sequences (a1, . . . , ) such that
∑∞

k=1|ak|2 is finite. We
have now shown that H is contained in `2.

Exercise: Given any sequence b = (bn), we can define the linear functional
hb : R∞ → R by the formula hb(a) =

∑∞
n=1 abbn. (Note that this sum is a finite

sum since an = 0 for sufficiently large n.)

However, this linear functional need not be continuous with respect to a given
norm! Now, assume that b is in `2 and let C =

∑∞
n=1‖bN |2.

Exercise: For any a in Rn, show that |hb(a)|2 ≤ C‖a‖2
2. (Hint: Use the

Cauchy-Shwarz inequality for Rn!)
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Since R∞ is the union of the subspaces Rn, we see that hb is a bounded linear
function when b is in `2. In other words, we have shown that `2 is contained in
H. Thus H = `2.

Exercise: By following the above exercises carefully, show that the operator
norm ‖hb‖ of hb is given by

(∑∞
n=1|bn|2

)1/2.

It is therefore natural to define the norm on `2 by:

‖b‖2 =
( ∞∑

n=1
|bn|2

)1/2

Above, we have shown that the completion of an inner-product space is a
contained in its dual space. So, we see that the completion of R∞ is contained in
`2 in a natural way. We will now see that this is an equality. Given any sequence
b in `2, we define b(n) to be the truncated sequence which consists of 0 beyond
the n-th co-ordinate.

Exercise: Show that ‖b− b(N)‖2
2 =

∑
n>N |bn|2.

Exercise: Given ε > 0 show that there is an N so that if n ≤ N , then
‖b− b(N)‖ < ε.

In other words, b(n) is a Cauchy sequence converging to b in `2. Moreover, b(n)

lies in R∞. We thus see that R∞ is dense in `2. Since we have already seen that
completion of R∞ with respect to ‖·‖2 is contained in `2, we obtain equality.

Above, we have shown that the completion of an inner-product space is also an
inner-product space. This is one way to prove that `2 is an inner-product space.
However, we can also do this more directly as follows.

Exercise: Given sequences a and b in `2, show that

|
M∑

k=N

akbk|2 ≤

(
M∑

k=N

|ak|2
)(

M∑
k=N

|bk|2
)

Exercise: Given ε > 0 show that there is an N so that for any M we have(
M∑

k=N

|ak|2
)
< ε and

(
M∑

k=N

|bk|2
)
< ε

(Hint: Use the fact that the sum from k = 1 to infinity converges in each case.)

Exercise: Show that
∑∞

k=1 akbk converges when a and b lie in `2.

We can thus define a pairing on `2 by the formula

〈a, b〉 =
∞∑

k=1
akbk
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Exercise: Check that this is an inner product on `2.

We note that, along the way, we have shown that any linear functional on R∞

that is continuous with respect to ‖·‖2 is given by inner-product with a vector in
`2. Since R∞ is dense in `2, the same holds for a continuous linear functionals
on `2. In other words, we have shown that h : `2 → B(`2,R) defined by

b 7→ hb where hb(a) = 〈a, b〉

is an isomorphism. In fact, as seen above, it also preserves the norm. This is the
statement of Riesz representation theorem for `2. We will see a different proof
in the next section.
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