Hilbert Spaces

An inner product space V carries a natural norm induced by its inner product.
We say that V is a Hilbert space if V' is complete with respect to this norm.

As seen earlier, R™ carries a natural inner product and is complete with respect
to the induced norm. So it is a Hilbert space. More generally, we saw that any
finite dimensional inner product space can be identified with R™ and its natural
inner product. Thus, such a space is automatically complete. The primary
object of our study is therefore infinite dimensional spaces.

As shown earlier, any normed space V can be embedded in its completion V. A
continuous linear functional on V extends to V in a unique way as a continuous
linear functional there. Moreover, a continuous linear functional on V is uniquely
determined by its restriction to the dense subspace V. In other words, the
restriction map B(V,R) — B(V,R) is an isomorphism.

Exercise: For any continuous linear functional f on V, show that
11l =Alf(v)]:v eV and [v] <1}

(Hint: Show that if v,, is a Cauchy sequence in V' that converges to w in V, then
there is a Cauchy sequence w,, in V' converging to w such that ||w,| < ||w].)

As shown earlier, the normed space B(V, W) is complete with the operator norm
whenever W is complete. Thus, B(V,R) is a complete normed space.

For an inner product space V' we have shown the Cauchy-Schwarz inequality:
(v, w)| < [lollllw]|

Exercise: Show that the function f,, : V' — R defined by f,(v) = (v,w) is
continuous with respect to the norm induced by the inner product. Moreover,
the “operator norm” || f,, || satisfies || f|| = |Jw]|-

We thus get a natural map f: V. — B(V,R) given by v — f, which preserves
the norm.

Since V is the completion of V, we get a natural extension of this map to
g:V — B(V,R) which also preserves the norm. It follows that g is 1-1. Since
B(V,R) = B(V,R) it follows that for every pair of vectors a and b in V, we can
define [a,b] = g(b)(a).

We see easily that the pairing [, ] is bi-linear. Moreover, if v,, is a Cauchy sequence
in V' that converges to a and w,, is a Cauchy sequence in V' that converges to b,
then

g9(b)(a) = lim g(b)(vn) = lim g(wy,)(a)

n—oo n—oo

The first equality follows from the continuity of g(b) and then the second equality
follows from the continuity of g. Now, g(w,) = f(wy,), since g restricts to f on



V. By the continuity of f(w,,) we have

flwn)(a) = Tim f(wn)(vr)

k—o0

By definition f(wy,)(vg) = (vg, wy). It follows that

f(wn)(vk) = <Ukawn> :>wnavk> = f(”k)(wn) = g(vk)(wn)

Taking the limit as k£ goes to infinity we have

Flwn)(@) = Jim flw)(ox) = Tim g(og)(wn) = g(a)(w,)

k—o0

Now, take the limit as n goes to infinity to obtain

g(b)(a) = Tim g(wa)(a) = lim f(wn)(a) = lim g(a)(wn) = g(a)(b)

n—oo
Thus, we see that [,] on V is symmetric.

Exercise: Show that if [v,v] = 0 for v in V, then v = 0. (Hint: If v, is a
sequence in V' that converges to v, then show that [v,v] = limn — co(vy, vy,).)

Thus [,] is an inner product on V. In other words:

The completion of an inner product space is a complete inner product space, i.e. a
Hilbert space.

The space /5.

One way to “construct” an infinite dimensional space is as follows. Consider
the space R* of “eventually 0” sequences; a sequence (ag,az,...) lies in R* if
there is an n so that ay = 0 for k > n. If we consider R™ as the subset of R*
consisting all a so that ax = 0 for k > n, then R* is the union of R™ over all n.

Exercise: Check that R* inherits the structure of a vector space over R from
the vector space structure on R™.

Given two elements a and b in R* we can define

<CL, b> = Z akbk
k=1

This sum “looks” infinite, but is actually finite as there is a common n so that a
and b lie in R™.

Exercise: Check that this makes R* into an inner product space. (Hint: Note
that the identities that we need to check involve at most two vectors and both
of those lie in R™ for some common 7.)

This induces a norm on R* which we denote as ||-||2. The completion of R>
with respect to this norm is what we now want to study.



Let H be the space B((R*, ||-||2), R) of linear functionals on R* that are bounded
with respect to the norm ||-||2. Given a linear functional h € H it is determined
by its sequence of values h(e(™), where e(™) is the standard basis of R>®. Hence,
we can identify H as a subset (in fact, subspace) of the space of sequences. Let
b = (by) be a sequence in H and h;, denote the linear functional associated with
it.

Exercise: For a vector a = (a,,) in R show that hy(a) = >, apb,. (Note
that this sum is a finite sum since a,, = 0 for sufficiently large n.)

Since we are given that hp is a bounded linear functional, there is a positive
constant C' so that |hy(a)| < Clla||2 for all @ in R*. In particular, let is define
for each N, a vector a™) as follows:

[bnl®
aﬁlN): o if b, #0 and n < N
0 ifb,=00rn>N

Exercise: Check that
N
By (@) = 3 [ba = (@™, a™)
n=1

Now, if b is not the sequence consisting of zeroes, then a(™) is a non-zero vector
in R> for sufficiently large N. Hence, we can define v¥) = a(™ /||a(N)||5 as the
unit vector along a(™).

Exercise: Check that
N
o) = (3 [bal*)? = [la™), a5
n=1

Since we have |[v(™) |5 = 1, the boundedness of hy, gives us hy(v(M)) < C. Thus,
we see that (Zg:1|bn|2) < C? is bounded independent of N. In other words,
we have show that > >~ |b,|? is a convergent sum.

The space {5 consists of sequences (a1, ..., ) such that >~ |ag|? is finite. We
have now shown that H is contained in /5.

Exercise: Given any sequence b = (b,), we can define the linear functional
hy : R® — R by the formula hy(a) = >~ ; apby,. (Note that this sum is a finite
sum since a,, = 0 for sufficiently large n.)

However, this linear functional need not be continuous with respect to a given
norm! Now, assume that b is in ¢ and let C = > >, [lbw|*

Exercise: For any a in R", show that |hy(a)|> < C|lal|3. (Hint: Use the
Cauchy-Shwarz inequality for R™!)



Since R*° is the union of the subspaces R™, we see that hy is a bounded linear
function when b is in ¢5. In other words, we have shown that ¢5 is contained in
H. Thus H = 4s.

Exercise: By following the above exercises carefully, show that the operator
norm ||| of hy is given by (325, ba|2)"%.

It is therefore natural to define the norm on ¢y by:

0 1/2
1bll2 = (Zlbnl2>
n=1

Above, we have shown that the completion of an inner-product space is a
contained in its dual space. So, we see that the completion of R*> is contained in
{5 in a natural way. We will now see that this is an equality. Given any sequence
b in £y, we define b(™ to be the truncated sequence which consists of 0 beyond
the n-th co-ordinate.

Exercise: Show that [|b— b |3 =3 _ v |b,|2

Exercise: Given € > 0 show that there is an N so that if n < N, then
16— bM< e

In other words, b is a Cauchy sequence converging to b in fo. Moreover, b(")
lies in R*°. We thus see that R> is dense in ¢5. Since we have already seen that
completion of R> with respect to ||-||2 is contained in £o, we obtain equality.

Above, we have shown that the completion of an inner-product space is also an
inner-product space. This is one way to prove that ¢ is an inner-product space.
However, we can also do this more directly as follows.

Exercise: Given sequences a and b in /5, show that
M M M
|Z arb|® < <Z |ak|2> <Z |bk2>
k=N k=N k=N

Exercise: Given € > 0 show that there is an N so that for any M we have

M M
(Zak|2> < € and <Z|bk|2> <e
k=N k=N

(Hint: Use the fact that the sum from k& = 1 to infinity converges in each case.)

Exercise: Show that Z;‘;l arby converges when a and b lie in £5.

We can thus define a pairing on ¢ by the formula

(a,b) = Z abr
k=1



Exercise: Check that this is an inner product on /5.

We note that, along the way, we have shown that any linear functional on R
that is continuous with respect to ||-||2 is given by inner-product with a vector in
l5. Since R* is dense in /5, the same holds for a continuous linear functionals
on ¢5. In other words, we have shown that h : ¢o — B(f2,R) defined by

b — hy where hy(a) = (a, b)
is an isomorphism. In fact, as seen above, it also preserves the norm. This is the

statement of Riesz representation theorem for /5. We will see a different proof
in the next section.
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