
Operator Spaces

Given normed linear spaces V and W , we have the space B(V,W ) of continuous
(bounded) linear transformations from V →W . We have seen that B(V,W ) is
a linear space. Moreover, for L in B(V,W ), if we define:

‖L‖ = sup
‖v‖=1

‖L(v)‖

then, we have shown that:

1. For L and M in B(V,W ), we have ‖L+M‖ ≤ ‖L‖+ ‖M‖.
2. For z ∈ C we have ‖z · L‖ = |z|‖L‖.
3. If ‖L‖ = 0 then L = 0.

So, we can construct new normed spaces out of old ones!

Weak and Strong Convergence

Given a sequence Ln of elements in B(V,W ) and a map L : V →W , we say that
Ln converges weakly to L if, for every v in V , the sequence Ln(v) of elements of
W converges to L(v). This is called “weak” as opposed to the stronger notion of
convergence in the norm topology on B(V,W ).

Now Ln(a · v + w) = a · Ln(v) + Ln(w). The left-hand side of this equation
converges to L(a · v+w) by weak convergence. On the other hand, by continuity
of scalar multiplication and addition of vectors in W , we see that

lim
n→∞

(a · Ln(v) + Ln(w)) = a · lim
n→∞

Ln(v) + lim
n→∞

Ln(w) = a · L(v) + L(w)

Thus, it is consequence of weak convergence that the map L : V →W is linear!
In other words:

The weak limit of a sequence of linear operators is linear.

Secondly, suppose that ‖Ln‖ ≤ C is uniformly bounded independent of n. We
then have ‖Ln(v)‖ ≤ C‖v‖. Since norm is a continuous function on W , the
left-hand side of the inequality converges to ‖L(v)‖. It follows that ‖L‖ ≤ C
and thus L : V →W is bounded and hence continuous. In other words:

If a uniformly bounded sequence of linear operators weakly converges, then the
limit is a bounded linear operator.

Now, in addition to Ln converging weakly to L, suppose that Ln is a Cauchy
sequence in the operator norm. This means that for all ε > 0, there is an N
(depending on ε) such that ‖Ln − Lm‖ < ε/2 for all n,m ≥ N . We then have:

‖Ln(v)− LN (v)‖ < (ε/2)‖v‖ for all n ≥ N
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Taking a limit of the left-hand side as n goes to infinity, we get:

‖L(v)− LN (v)‖ ≤ (ε/2)‖v‖

Applying the triangle inequality, we get, for n ≥ N

‖L(v)−Ln(v)‖ ≤ ‖L(v)−LN (v)‖+‖Ln(v)−LN (v)‖ < (ε/2)‖v‖+(ε/2)‖v‖ = ε‖v‖

In other words, ‖L−Ln‖ < ε for n ≥ N . Since we get such an N for every ε > 0,
it follows that Ln converges to L in the operator norm. In other words:

If a Cauchy sequence of linear operators converges weakly to a linear operator,
then it also converges strongly to that linear operator.

Completeness

One particular case when we can apply the previous section is when W is
complete. In that case, if Ln(v) is a Cauchy sequence, then it converges to a
vector in W . We then define L(v) to be the limit.

For example, if we assume that Ln is a Cauchy sequence in the operator norm,
then for each v, we can show that Ln(v) is a Cauchy sequence as follows. First
of all, this is clear when v = 0 since Ln(0) = 0 for all n. Thus we can assume
that ‖v‖ 6= 0. Now, given ε > 0, we know that there is an N (depending on
ε and v) such that for all n,m ≥ N , we have ‖Ln − Lm‖ < ε/‖v‖. It follows
that ‖Ln(v)− Lm(v)‖< ε for all n,m ≥ N . Since we can do this for every ε, it
follows that Ln(v) is Cauchy.

In other words, if W is complete, and if a sequence of elements Ln in B(V,W )
is a Cauchy sequence in the operator norm, then it weakly converges to a map
L : V → W . Now, as seen above, this means that L is a linear operator and
Ln strongly converges to L. Since a Cauchy sequence is uniformly bounded, it
follows that L is in B(V,W ). In summary, we have shown that:

If W is a complete normed space, then B(V,W ) is a complete normed space.

The above is specifically useful when applied to B(V,C). Since C is a complete
metric space with the usual norm on it, we see that the dual of a normed space
is always complete.

This provides us with another proof that `1 which is the dual of C0 is complete.
Similarly, `∞ is the dual of `1 and so it is complete. We will see further
applications when we study Hilbert spaces and the spaces `p.
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