Operator Spaces

Given normed linear spaces V and W, we have the space B(V, W) of continuous
(bounded) linear transformations from V' — W. We have seen that B(V, W) is
a linear space. Moreover, for L in B(V, W), if we define:

1] = HShlelHL(v)ll

then, we have shown that:

1. For L and M in B(V,W), we have ||L 4+ M| < ||L|| + ||M].
2. For z € C we have ||z - L|| = |z|||L]|-
3. If ||[L]] =0 then L = 0.

So, we can construct new normed spaces out of old ones!

Weak and Strong Convergence

Given a sequence L, of elements in B(V, W) and a map L : V — W, we say that
L,, converges weakly to L if, for every v in V', the sequence L,,(v) of elements of
W converges to L(v). This is called “weak” as opposed to the stronger notion of
convergence in the norm topology on B(V,W).

Now Lp(a-v+w) = a- L,(v) + Ly(w). The left-hand side of this equation
converges to L(a-v+ w) by weak convergence. On the other hand, by continuity
of scalar multiplication and addition of vectors in W, we see that
lim (a-L,(v)+ Lp(w)) =a- lim L,(v)+ lim L,(w)=a-L(v)+ L(w)
n—oo n—oo n—oo

Thus, it is consequence of weak convergence that the map L : V — W is linear!
In other words:

The weak limit of a sequence of linear operators is linear.

Secondly, suppose that || L, || < C is uniformly bounded independent of n. We
then have ||L,(v)|| < C||v|. Since norm is a continuous function on W, the
left-hand side of the inequality converges to |L(v)||. It follows that ||L|| < C
and thus L : V — W is bounded and hence continuous. In other words:

If a uniformly bounded sequence of linear operators weakly converges, then the
limit is a bounded linear operator.

Now, in addition to L, converging weakly to L, suppose that L, is a Cauchy
sequence in the operator norm. This means that for all ¢ > 0, there is an NV
(depending on €) such that ||L, — Ly,[| < €/2 for all n,m > N. We then have:

| Ly (v) = Ln(v)]] < (¢/2)]|v|| for all n > N



Taking a limit of the left-hand side as n goes to infinity, we get:
[1L(v) = Ly ()|l < (e/2)[Jv]
Applying the triangle inequality, we get, for n > N
I1L(0)=Ln ()| < [L(v) =Ly @)+ Ln(v) =Ly @)]| < (¢/2)[[v]+(e/2)|v]| = €[v]

In other words, |L — L, || < € for n > N. Since we get such an N for every € > 0,
it follows that L,, converges to L in the operator norm. In other words:

If a Cauchy sequence of linear operators converges weakly to a linear operator,
then it also converges strongly to that linear operator.

Completeness

One particular case when we can apply the previous section is when W is
complete. In that case, if L,(v) is a Cauchy sequence, then it converges to a
vector in W. We then define L(v) to be the limit.

For example, if we assume that L,, is a Cauchy sequence in the operator norm,
then for each v, we can show that L, (v) is a Cauchy sequence as follows. First
of all, this is clear when v = 0 since L, (0) = 0 for all n. Thus we can assume
that ||v]| # 0. Now, given € > 0, we know that there is an N (depending on
e and v) such that for all n,m > N, we have ||L, — L,|| < €¢/||v|. It follows
that ||L,(v) — Ly, (v)]|< € for all n,m > N. Since we can do this for every e, it
follows that L, (v) is Cauchy.

In other words, if W is complete, and if a sequence of elements L,, in B(V, W)
is a Cauchy sequence in the operator norm, then it weakly converges to a map
L :V — W. Now, as seen above, this means that L is a linear operator and
L,, strongly converges to L. Since a Cauchy sequence is uniformly bounded, it
follows that L is in B(V,W). In summary, we have shown that:

If W is a complete normed space, then B(V,W) is a complete normed space.

The above is specifically useful when applied to B(V,C). Since C is a complete
metric space with the usual norm on it, we see that the dual of a normed space
is always complete.

This provides us with another proof that ¢; which is the dual of Cy is complete.
Similarly, ¢, is the dual of ¢; and so it is complete. We will see further
applications when we study Hilbert spaces and the spaces .
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