Operator Spaces

Given normed linear spaces V and W, we have the space B(V, W) of continuous (bounded) linear transformations from $V \to W$. We have seen that B(V, W) is a linear space. Moreover, for L in B(V, W), if we define:

$$||L|| = \sup_{||v||=1} ||L(v)||$$

then, we have shown that:

- 1. For *L* and *M* in B(V, W), we have $||L + M|| \le ||L|| + ||M||$.
- 2. For $z \in \mathbb{C}$ we have $||z \cdot L|| = |z|||L||$.
- 3. If ||L|| = 0 then L = 0.

So, we can construct new normed spaces out of old ones!

Weak and Strong Convergence

Given a sequence L_n of elements in B(V, W) and a map $L: V \to W$, we say that L_n converges weakly to L if, for every v in V, the sequence $L_n(v)$ of elements of W converges to L(v). This is called "weak" as opposed to the stronger notion of convergence in the norm topology on B(V, W).

Now $L_n(a \cdot v + w) = a \cdot L_n(v) + L_n(w)$. The left-hand side of this equation converges to $L(a \cdot v + w)$ by weak convergence. On the other hand, by continuity of scalar multiplication and addition of vectors in W, we see that

$$\lim_{n \to \infty} \left(a \cdot L_n(v) + L_n(w) \right) = a \cdot \lim_{n \to \infty} L_n(v) + \lim_{n \to \infty} L_n(w) = a \cdot L(v) + L(w)$$

Thus, it is *consequence* of weak convergence that the map $L: V \to W$ is linear! In other words:

The weak limit of a sequence of linear operators is linear.

Secondly, suppose that $||L_n|| \leq C$ is uniformly bounded independent of n. We then have $||L_n(v)|| \leq C||v||$. Since norm is a continuous function on W, the left-hand side of the inequality converges to ||L(v)||. It follows that $||L|| \leq C$ and thus $L: V \to W$ is bounded and hence continuous. In other words:

If a uniformly bounded sequence of linear operators weakly converges, then the limit is a bounded linear operator.

Now, in addition to L_n converging weakly to L, suppose that L_n is a Cauchy sequence in the operator norm. This means that for all $\epsilon > 0$, there is an N (depending on ϵ) such that $||L_n - L_m|| < \epsilon/2$ for all $n, m \ge N$. We then have:

$$||L_n(v) - L_N(v)|| < (\epsilon/2)||v||$$
 for all $n \ge N$

Taking a limit of the left-hand side as n goes to infinity, we get:

$$||L(v) - L_N(v)|| \le (\epsilon/2)||v||$$

Applying the triangle inequality, we get, for $n \ge N$

$$||L(v) - L_n(v)|| \le ||L(v) - L_N(v)|| + ||L_n(v) - L_N(v)|| < (\epsilon/2)||v|| + (\epsilon/2)||v|| = \epsilon ||v||$$

In other words, $||L - L_n|| < \epsilon$ for $n \ge N$. Since we get such an N for every $\epsilon > 0$, it follows that L_n converges to L in the operator norm. In other words:

If a Cauchy sequence of linear operators converges weakly to a linear operator, then it also converges strongly to that linear operator.

Completeness

One particular case when we can apply the previous section is when W is complete. In that case, if $L_n(v)$ is a Cauchy sequence, then it converges to a vector in W. We then define L(v) to be the limit.

For example, if we assume that L_n is a Cauchy sequence in the operator norm, then for each v, we can show that $L_n(v)$ is a Cauchy sequence as follows. First of all, this is clear when v = 0 since $L_n(0) = 0$ for all n. Thus we can assume that $||v|| \neq 0$. Now, given $\epsilon > 0$, we know that there is an N (depending on ϵ and v) such that for all $n, m \geq N$, we have $||L_n - L_m|| < \epsilon/||v||$. It follows that $||L_n(v) - L_m(v)|| < \epsilon$ for all $n, m \geq N$. Since we can do this for every ϵ , it follows that $L_n(v)$ is Cauchy.

In other words, if W is complete, and if a sequence of elements L_n in B(V, W) is a Cauchy sequence in the operator norm, then it weakly converges to a map $L: V \to W$. Now, as seen above, this means that L is a linear operator and L_n strongly converges to L. Since a Cauchy sequence is uniformly bounded, it follows that L is in B(V, W). In summary, we have shown that:

If W is a complete normed space, then B(V,W) is a complete normed space.

The above is specifically useful when applied to $B(V, \mathbb{C})$. Since \mathbb{C} is a complete metric space with the usual norm on it, we see that the dual of a normed space is *always* complete.

This provides us with another proof that ℓ_1 which is the dual of C_0 is complete. Similarly, ℓ_{∞} is the dual of ℓ_1 and so it is complete. We will see further applications when we study Hilbert spaces and the spaces ℓ_p .