
Spaces of Sequences

An important class of topological vector spaces which we will now study is the
class of spaces of sequences. This will also give us an opportunity to revise some
fundamental ideas from analysis.

To fix notions, we will work with vector spaces over the field C of complex
numbers.

We begin with the vector space C∞ consisting of all sequences that are eventually
0. In other words, this is the space of sequences (an)∞n=1 such that there is an
N so that an = 0 for all n > N ; note that the N may be different for different
elements of C∞. For each k, consider the vector e(k) as the sequence (δk,n)∞n=1;
in other words, only the k-th entry of e(k) is 1 and all others are 0. Then C
is the vector space consisting of linear combinations (which by definition are
finite!) of the countable basis {e(k)}∞k=1.

Exercise: Show that every vector in C∞ is a unique finite linear combination
of the vectors e(k) for k = 1, 2, . . ..

In order to put a topology on this space, we need to define a notion of distance.
Given any two vectors a = (an) and b = (bn) in C, there is a common N so that
an = 0 = bn for all n > N . In other words, a and b lie in the finite dimensional
subspace CN of C∞ that consist of sequences that are 0 beyond the N -th entry.
It then makes sense to take the distance between a and b to be the distance in
this finite dimensional subspace CN . However, there are many such notions of
distance and (as we shall see later) and that will make a difference to the space
we will construct by “completion of the metric”.

Norms

A norm on a vector space V is a function || · || : V → R≥0 which satisfies:

1. (Positivity) ||a|| = 0 if and only if a = 0.
2. (Linearity) ||z · a|| = |z| · ||a|| for all z in C and for all a in V .
3. (Triangle Inequality) ||a+ b|| ≤ ||a||+ ||b|| for all a and b in V .

Exercise: Note that we can define a metric on V by putting d(a, b) = ||a− b||.
Show that the multiplication C×V → V and addition V ×V → V are continuous
with respect to this metric.

Recall that complete metric space is one where any Cauchy sequence has a limit.
Recall that a metric space has a completion. This means that the metric space
(V, d) can be seen as a metric subspace of a complete metric space W .

In a later section we will see how this can be done for a normed space in particular.
For the moment, it is worth remarking that we will study various spaces obtained
as completions associated with various norms on C∞.
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The simplest norm on C∞ is defined by defining it on a = (an) by the formula
||a||∞ = supn |an|. Note that since an = 0 for n >> 0, this is the same as
maxn |an| in this particular case.

The space C of convergent sequences

The space C∞ together with the norm || · ||∞ is often denoted as C00. This
notation is chosen because of two (larger) spaces C0 and C which we will study
below.

The space C is the space of convergent sequences of complex numbers. Since
complex numbers form a complete metric space, we can also think of C as the
space of all Cauchy sequences of complex numbers.

Exercise: Show that C is closed under addition of sequences and multiplication
of a sequence by a fixed scalar. In other words, show that C is a vector space.

Exercise: For a convergent sequence (an) of complex numbers show that
supn |an| exists. Note that this may be different from limn |an| which also exists
by providing an example where the two are different.

We can thus define ||(an)||∞ = supn |an| on the space C.

Exercise: Show that this defines a norm on C.

Hence, there is a metric on C defined by d(a, b) = ||a− b||∞ as above.

Exercise: Show that a sequence {a(n)} is a Cauchy sequence in this metric
if and only if, for every ε > 0, there is an N so that ||a(n) − a(m)||∞ < ε for
n,m ≥ N .

To do the above exercise as well as the following exercises, it is useful to visualise
the a(n) as the n-th row of an infinite by infinite matrix A.

Note that the k-th terms of this sequence (the columns of the matrix A) satisfy

|a(n)
k − a(m)

k | ≤ ||a(n) − a(m)||

Using this we conclude that, for each k, {a(n)
k }∞n=1 is a Cauchy sequence of

complex numbers. Since complex numbers form a complete metric space, this
sequence converges to a complex number bk.

We claim that this sequence b = (bk) is in C and that a(n) converges to b in this
metric space. To do this we will show that (bk) is itself a Cauchy sequence of
complex numbers.

Given ε > 0, let N be such that ||a(n) − a(m)|| < ε/3 for n,m ≥ N . Since a(N)

(the N -th row of A) is a Cauchy sequence, there is aM so that |a(N)
k −a(N)

l | < ε/3
for k, l ≥M .
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Exercise: Show that |a(n)
k − a(m)

l | < ε for all n,m ≥ N and k, l ≥M . (Hint: In
terms of the matrix A, note that for the N -th row and below, any two elements
in the same column are within ε/3 of each other. Moreover, any two elements in
the N -th row beyond the M -th column are within ε/3 of each other.)

Now, for a fixed k, the sequence a(n)
k (the k-th column of A) converges to bk.

Exercise: Show that of |a(N)
k − bk| ≤ ε/3 for k ≥ M . (Hint: bk is the limit of

a
(n)
k for n ≥ N .)

Exercise: As a consequence of the above reasoning, show that (bk) is also a
Cauchy sequence.

For each i = 1, . . . ,M − 1, the sequence a(n)
i converges to bi as n goes to infinity.

So we can choose Li so that |bi − a(n)
i | < ε for n ≥ Li. Let L be larger than all

the Li and also larger than N .

Exercise: Combine the above two exercises to show that |bk − a(n)
k | ≤ ε for all

k as long as n ≥ L.

So we have shown that ||b − a(n)||∞ ≤ ε for n > L. Since ε > 0 was arbitrary,
we see that the sequence a(n) converges to b in C under the metric given by the
norm || · ||∞. Hence C is a complete metric space.

The subspace C0 of C consists of sequences that converge to 0. Given a sequence
a = (ak) in C, let α be the limit of ak. Then the sequence (ak − α) is in C0.
Let e(0) denote the sequence which is the “constant” sequence consisting of 1’s.
Then a− α · e(0) is the same as the sequence (ak − α). In other words, we have
written every element of C as a sum of an element of C0 and a multiple of e(0).

Exercise: If {a(n)} is a Cauchy sequence of elements of C0, then show that its
limit in C as constructed above is also in C0.

In other words, C0 is a closed subspace of C.

Given a sequence a = (ak) in C0, we can form the elements a(n) of C00 by defining
a

(n)
k = ak for k ≤ n and a(n)

k = 0 for k ≥ n.

Exercise: Show that the sequence a(n) converges to a in C.

It follows that C00 is dense in C0.

Counter Examples-1

In order to see the importance of the Cauchy property with respect to the || · ||∞
norm, let us consider the sequence of elements a(n) of C00 defined as follows:

a
(n)
k =

{
k for k ≤ n
0 for k > n

3



Note that for each fixed k, the sequences (a(n)
k )∞n=1 are constant sequences with

value k for n ≥ k. In other words, the “columns” of our matrix are Cauchy
sequences. Moreover, each a(n) is an element of C00. All the same, the limit
sequence is the sequence of positive integers and that is not in C!

In other words, it is not enough if the rows and columns of the matrix are Cauchy.
The Cauchy property of the sequence of elements a(n) in C is essential to getting
a common limit.

Continuous Linear Functionals

Since we are dealing with a topological vector space V , we need to study maps
f : V → C which are not only linear but also continuous. Such a map is called a
“continuous linear functional” on V .

On the space C we have the obvious linear functionals corresponding to the
“co-ordinates”. The functional f (k) sends the sequence (an) to the complex
number ak.

Exercise: Check that f (k) is a continuous linear functional on C with respect
to the || · ||∞ norm.

Note that this is the same as the statement proved above that the k-th co-
ordinates of a Cauchy sequence in C form a Cauchy sequence of complex numbers.

The question we can ask ourselves is whether there are any other continuous
linear functionals. Suppose that we are given a sequence a(n) in C that converges
to b in C. By definition of C, for each fixed n, the sequence a(n)

k of complex
numbers converges to a complex number αn as k goes to infinity. Similarly, if b
is the sequence (bk), then the sequence bk of complex numbers converges to a
complex number β.

Exercise: Show that the sequence αn converges to β.

Further, it is a standard fact that:

Exercise: If (ak) converges to α and (bk) converges to β, then (ak +bk) converges
to α+ β and, for any complex number z, the sequence (zak) converges to zα.

It follows that the map g : C → C that sends a sequence (an) to its limit α is a
continuous linear functional on C. Let us denote this as f (0) : C → C.

What other continuous linear functionals on C are there? Clearly, we can take
finite linear combinations of linear functionals to get linear functionals. So
we can form a finite sum like

∑
k≤r ckf

(k) (with f (k) as above) to get a linear
functional on C. How about an infinite sum? Will it make sense. When does∑∞

k=1 ckak make sense for all sequences (ak) in C? Let us first see when it does
not make sense!
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Suppose the series
∑

k ck is not absolutely convergent; in other words
∑∞

k=1 |ck|
diverges to infinity. (Note that if

∑N
k=1 |ck| is bounded by a fixed bound for all

N then, by Archimedes’ principle, this series converges to a real number γ. This
is the power of this principle!)

Exercise: Show that these is a sequence n0 = 0 < n1 < n2 < · · · of integers so
that

∑nr

k=nr−1+1 |ck| ≥ r for r ≥ 1.

We can then define a sequence ak as follows:

ak =
{

0 if ck = 0
1
r
|ck|
ck

if ck 6= 0 and nr−1 < k ≤ nr

Exercise: With this definition, show that (ak) lies in C0.

On the other hand, we see that

ak · ck =
{

0 if ck = 0
|ck|

r if ck 6= 0 and nr−1 < k ≤ nr

Exercise: Show that
∑nr

k=nr−1+1 akck ≥ 1. It follows that
∑nr

k=1 akck ≥ r.

In other words, the series
∑
akck does not converge. Thus, in order for such

a sum to make sense for all elements (ak) in C it is necessary that
∑

k |ck| be
bounded; in other words, that the series

∑
k ck be absolutely convergent.

Given a continuous linear functional f : C → C. Let us define ck = f(e(k)).
Consider the linear functional f restricted C00 ⊕ C · e(0). It is clearly defined
“formally” as c0f

(0) +
∑∞

k=1 ckf
(k). On the other hand, as seen above this formal

expression does not give a continuous linear functional on C unless
∑

k ck is
absolutely convergent.

Exercise: Modify the above argument to show that the linear functional defined
formally on C00 by the sum

∑∞
k=1 ckf

(k) is not continuous in the || · ||∞ norm
unless

∑
k ck is absolutely convergent. (Hint: The “truncated” sequences of the

sequence (ak) given above form a Cauchy sequence whose image is not Cauchy.)

On the other hand, if the above series is absolutely convergent, then:

Exercise: If a = (ak) is in C, then
∑

k |akck| ≤ ||a||∞
∑

k |ck|.

So the formally defined linear functional on C00 extends by continuity to C. Thus,
the space of continuous linear functionals on C can be identified with the collection
of functionals c0f

(0 +
∑∞

k=1 ckf
(k) where

∑
k ck is absolutely convergent.

Absolutely summable sequences

We define `1 to be the space of sequences (ck) of complex numbers such that
∑

k ck

is an absolutely convergent series; it is sometimes called the space of absolutely
summable sequences. We define the norm on this space to be ||(ck)||1 =

∑
k |ck|.
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Exercise: Check that || · ||1 is a norm on the linear space `1.

As seen above, the space `1 can be identified with the space of continuous linear
functionals on C0 (or C). The linear space C∞ is a subspace of `1 since finite
sequences are clearly absolutely summable.

Conversely, given a sequence c = (ck) in `1, we can (as above) produce a sequence
c(n) in C∞ by defining

c
(n)
k =

{
ck if k ≤ n
0 if k > n

Exercise: For any ε > 0, there is an N so that
∑

k>n |ck| < ε for all n > N .

Using the above we can show that:

Exercise: The sequence c(n) in C∞ converges to c with respect to the metric
defined by the || · ||1 norm on `1.

We have thus produced another norm || · ||1 on the space C∞ different from
|| · ||∞. However, at this point it is not clear whether the induced topology is
different. To see that we would need to see that the completions C0 and `1 are
different topological vector spaces. One way to see this is to study the space of
continuous linear functionals on `1!

Bounded Sequences

Let a = (ak) be a sequence such that supk |ak| < ∞; in other words a is a
bounded sequence. We define ||a||∞ = supk |ak| as above.

Exercise: For an absolutely summable sequence c = (ck), show that
|
∑

k akck| ≤ ||a||∞||c||1. (Hint: The proof is exactly the same as the one used
when a is a convergent sequence. That proof did not use the convergence of the
sequence, merely its boundedness!)

Exercise: Check that the map `1 → C given by c 7→
∑

k akck is a continuous
linear functional on `1. Further note that e(n) 7→ an, so that if an 6= 0 for some
n, then the linear functional is non-zero.

It follows that the space `∞ of bounded sequences of complex numbers is
contained in the space of continuous linear functionals on `1.

Conversely, given a linear functional f : `1 → C we can define an = f(e(n)). As
before, it is clear that if c = (ck) is a sequence in C∞, then f(c) is the finite sum∑

k akck. However, it is not clear whether this is true for all elements of `1. In
fact, it is not clear that the sum

∑
k akck even makes sense for all elements of `1.

Suppose that a = (ak) is not a bounded sequence. It follows that there is a
sequence n1 < n2 < · · · of positive integers so that |anr

| ≥ r. We now define a
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sequence c = (ck) as follows.

ck =
{

0 unless k = nr for some r
1
r2
|anr |
anr

k = nr

Exercise: Show that c = (ck) is an element of `1. (Hint: Note that
∑

k |ck| ≤∑
r 1/r2.)

Moreover, we calculate

ak · ck =
{

0 unless k = nr for some r
|anr |

r2 k = nr

Exercise: Show that
∑

k akck does not converge. (Hint: Note that this series
dominates

∑
r 1/r.)

Exactly as above, we can use this to show that the functional f : C∞ → C is
continuous in the norm || · ||1 only if a = (an) = (f(e(n))) is a bounded sequence.
By the density argument above, it then follows that `∞ is the space of continuous
linear functionals on `1.

By a number of different arguments, one can show that there is no embedding
of C∞ in `∞ which has dense image. It follows that `∞ is not isomorphic to `1
(which has such a dense embedding). It therefore follows that `1 is not isomorphic
to C or C0.

A normed linear space is called separable is it contains a dense embedding of
C∞. The space `∞ is not a separable space; it is essentially the only such space
that we will study. In the next section we will see that our primary objects of
study can be identified with separable subspaces of `∞.
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