
Bayesian Inference and Prediction

A typical situation in statistics is that we have a sequence of identical experiments
and we have to extract information from the resulting data. The numerical results
of the experiments are modelled as a sequence X1, X2, . . . , Xn of independent
random variables following a distribution fθ where θ is the parameter that we
wish to determine using the data.

So far, we have been assuming that all values of θ are permissible (or that all
values from a particular set of values are equally likely). However, this need not
always be the case. We may have some information “before-the-experiment” (a
priori knowledge) that may tell us the probability distribution of θ. Another
possibility is that we already did some experiments. As seen earlier, we need
not see the result of the experiment as a definite value of θ, rather we can see
the result as a probability distribution for θ.

Bayesian statistics takes the approach that data collected allows us to modify our
“before-the-experiment” distribution into an “after-the-experiment” distribution.
In other words, it allows us to use the information gathered to alter our perception
of the probability distribution of θ.

Bayesian Inference

Let us start with a simple example of two different types of coins. The first type
θ1 is a fair coin and has a probability 1/2 of showing a head. The second type θ2
is a biased coin as has a probability 2/3 of showing a head. We also assume that
the coin is being taken out a box that has 3 coins of the first type and 5 coins of
the second type. If we assume that each coin is equally likely to be picked then
P (θ = θ1) = 3/8 and P (θ = θ2) = 5/8.

Now we pick a coin of the box as above and flip it 100 times to get 60 heads. Is
the coin of type 1 or of type 2?

If the coin is of type 1, the probability of getting the above result is

L(θ1) = P (S100 = 60|θ = θ1) =
(

100
60

)
1

2100

Similarly, if the coin is of type 2, the probability of getting the above result is

L(θ2) = P (S100 = 60|θ = θ2) =
(

100
60

)(
2
3

)60 1
340

Note that these are the same as the likelihoods that we calculated earlier. We
can estimate

L(θ1)/L(θ2) = 3100

2160 ≈
(23 · 10)25

2160 ≈ 1025

285 ≈
1025

3 · 10 · 1024 = 1/3
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(Note that the approximate value from a calculator is 0.35 so our rapid estimates
are quite good!)

So we see that L(θ2) is about 3 times L(θ1). By our earlier discussion this is
not enough to rule out either of these possibilities! Moreover, θ1 and θ2 were a
priori not equally likely. We use Bayes rule to calculate the probability of the
event that occurred

P (S100 = 60) =
P (S100 = 60|θ = θ1)P (θ1) + P (S100 = 60|θ = θ2)P (θ2)

= (1/8)
(

100
60

)(
3 1

2100 + 5 260

3100

)

Note that the first term is P (S100 = 60 ∧ θ = θ1). Using Bayes rule again we
can then calculate

P (θ = θ1|S100 = 60) =
P (θ = θ1 ∧ S100 = 600)

P (S100 = 60) = 3 · 3300

3 · 3300 + 5 · 2160

≈ 3(1/3)
3(1/3) + 5 = 1/6

We similarly estimate that P (θ = θ2|S100 = 60) = 5/6. (Note that the approxi-
mate values obtained using a calculator are 0.17 and 0.83, so our estimates are
not badly off!)

We see that θ2 is 5 times as likely as θ1 once we take into account the information
that before-the-experiment θ2 was 5/3 as likely as θ1. This follows from

P (θ = θ1|Result) is proportional to P (θ = θ1)L(θ1)

Since we have the Result of the experiment, we can now use the probability
P (θ = θ1|Result) as the distribution after-the-experiment.

The above situation can be seen to hold in general and is the cornerstone of
calculations involving Bayesian Inference. The distribution for (θ|Result), or
equivalently, the distribution of θ after-the-experiment is proportional to the
product of the distribution before-the-experiment with the likelihood of θ given
the result of the experiment. The constant of proportionality can be calculated
by using the fact that the sum of the probabilities over all possible values of θ is
1.
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In the case of a discrete probability distribution, this becomes

P (θ = θi|Result) = P (θi)L(θi)∑
j P (θj)L(θj)

In the (absolutely) continuous distribution case, the statement is about proba-
bility densities and the sum in the denominator gets replaced by an integral.

Bayesian Prediction

One may want to continue the experiment as described above and use the data
gathered to make a prediction of the outcome.

Returning to the example of the coins. One can conclude from the experiment
that θ = θ2 is more likely, and thus predict that a new coin flip will result in Head
with a probability of 2/3. This is the “plug-in” method which uses Bayesian
Inference to make a prediction.

A different approach is to continue to use Bayes rule to make a prediction. Let
R be the event S100 = 60, or more generally the event representing the Result of
the experiment. Let H denote the event that represents a Head occurring in the
new coin flip. We apply Bayes’ rule to get

P (H ∧ (θ = θ1) ∧R) = P (H| (θ = θ1) ∧R)P ((θ = θ1) ∧R)

Now, the new experiment is independent of the earlier experiments. So

P (H| (θ = θ1) ∧R) = P (H| (θ = θ1))

Moreover, we can also apply Bayes rule to the second factor to get

P (H ∧ (θ = θ1) ∧R) = P (H| (θ = θ1))P ((θ = θ1)| R)P (R)

We obtain a similar formula with θ2 instead of θ1. It follows that

P (H ∧R) =
∑
i

P (H ∧ (θ = θi) ∧R) =
∑
i

P (H| (θ = θi))P ((θ = θi)| R)P (R)

Dividing both sides by P (R) and applying Bayes Rule once again, we get

P (H| R) =
∑
i

P (H| (θ = θi))P ((θ = θi)| R)

In other words, the probability of getting a Head given the result already obtained
is the convex combination of the probability of getting Head with each coin
with weight as the probability of that particular coin being the chosen one given
the Result. Write out these words as a mathematical formula (and using the
previous section) we have

P (H| R) =
∑
i P (H| (θ = θi))P (θ = θi)L(θi)∑

i P (θ = θi)L(θi)
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In our specific example, we see that (using the approximations earlier)

P (H|S100 = 60) ≈ (1/2)(1/6) + (2/3)(5/6) = 23/36

This is very close to the answer 2/3 which we got by the plug-in method but is
actually a bit smaller. (Using a calculator we get this to be approximately 0.64.)

A Healthy Counter-example

Even though we may feel happy with 95% confidence in our procedures, we
should know that this is not always adequate. To see why let us consider the
following example (taken from Lavine’s book on Statistics).

Suppose that 1 out of every thousand persons has a certain disease.

Suppose that there is test for the presence of the disease which is 95% accurate.

We formulate this information as follows. Let D be the random variable rep-
resenting which takes the value 1 if the chosen person has the disease and 0
otherwise. We have P (D = 1) = 1/1000 and P (D = 0) = 999/1000.

Let T be the random variable representing the result of the “test* on a randomly
chosen member of the population. We are given that the test is 95% successful.
In other words:

• Given that the person has the disease (D = 1) the probability of the test
showing the disease (T = 1) is 0.95; in terms of probability theory we write
this as P (T = 1|D = 1) = 0.95.

• Given that the person does not have the disease (D = 0) the probability
that the test showing the disease (T = 1) is 0.05; in terms of probability
theory we write this as P (T = 1|D = 0) = 0.05.

We want to calculate the probability that the person has the disease given that
the test shows its presence. In other words, we want P (D = 1|T = 1). We
calculate

P (D = 1|T = 1) = P (D = 1 ∩ T = 1)
P (T = 1) =

P (T = 1|D = 1)P (D = 1)
P (T = 1|D = 1)P (D = 1) + P (T = 1|D = 0)P (D = 0)

= 0.95× 0.001
0.95× 0.001 + 0.05× 0.999 ' 0.02

In other words, even though the test is 95% accurate, there is only a 2% chance
of a person having the disease when the test says that the disease is present!
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To understand what is happening, let us replace 95% by a parameter p. So

P (T = 1|D = 1) = p and P (T = 0|D = 0) = p

It follows that

P (T = 0|D = 1) = (1− p) and P (T = 1|D = 0) = (1− p)

Repeating the above calculation we have

P (D = 1|T = 1) = p · 0.001
0.001 + (1− p) · 0.999 = p

1 + (1− p) · 999

It follows easily that if p > 0.999 then this is > 1/2. In other words, in order
for one to have more than even chance of the test indicating the presence of the
disease, the effectivity of the test should be at least 99.9%!

In other words, the efficiency of the test should surpass the percentage of the
population that does not have the disease for the test to be a worthwhile indicator
of the presence of the disease. Otherwise, statistical errors in the test would
generate “false positives”.

This problem of “false positives” is a significant one in many contexts since it is
difficult to decide a priori how large a proportion of the population has a certain
characteristic. The rarer the characteristic, the more stringent the requirements
on correct-ness of the test. At least that aspect is intuitively more obvious than
that the other aspects of the above calculations!

5


	Bayesian Inference and Prediction
	Bayesian Inference
	Bayesian Prediction
	A Healthy Counter-example


