
Correctness of Estimation

In statistics, we begin by collecting data from an experiment. Based on descriptive
statistics, we make a “model” for our experiment. Typically, this model is a
distribution function with some unknown parameters. Our next task is to
estimate these parameters based on the data collected.

To help us do this, we write the likelihood function of these parameters based
on the data collected. This allows us to compare one choice of the parameter
with other choices of the parameter using the ratio of the likelihoods. How does
one interpret the ratio of the likelihoods?

Using a Reference Experiment

One way is to compare these likelihood ratios with some “standard” (or reference)
experiment. If we have two coins, one fair and another always giving heads,
the likelihood of n successive heads with the first is 2n times smaller than the
likelihood in the second case.

Comparing with this reference experiment, if L(c1)/L(c2) = 2n, and we pick c1
as the more likely parameter than c2, then it is like deciding a coin is biased if
we get n successive heads with it.

So a likelihood ratio of 8 is like deciding on the basis of 3 successive heads that
a coin is biased. Similarly, a likelihood ratio of 1000 is like using 10 succesive
heads to decide that a coin is biased.

On the one hand this suggests that we estimate the parameter as the one that
leads to the maximum likelihood; this is the method of maximum likelihood
estimation. This suggests one reasonable way to write the estimator function.

On the other hand, if someone else uses an estimator which leads to a likelihood
of (say) 1/4-th of the maximum, then a parameter choice based on MLE is
“better” than this second method as much as deciding a coin is biased based on
two successive heads! This does not sound like much and it is not.

In each context we must decide what likelihood ratio L(c1)/L(c2) is large enough
for us to consider that c1 is a better estimate than c2. Statisticians suggest that
in many cases 10 is reasonable; in other words, the likelihood is “one order of
magnitude” different.

Probability distribution of the estimator

As seen earlier, the (maximum likelihood) estimator is a function of the values
of the random variables. Hence, it too can be thought of as a random variable
with a distribution! What is the probability distribution of the estimator?
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The justification for studying this distribution is as follows. If the estimator is
unbiased, then the mathematical expectation of the estimator is the parameter
being estimated. Thus, the nature of the probability distribution of the estimator
gives us a good idea of how “tight” our estimate is; if the distribution is sharply
peaked around the expectation, then we can say, with high probability, that our
estimate will be close to the parameter.

As seen in many examples earlier, the parameter of the distribution can be taken
to be the expection. In many cases, the sample mean can be shown to be the
maximum likelihood estimator for the expection of a distribution. In any case,
it is a good unbiased estimator of the expectation.

Let us model our data as a sequence of idependent random variables
X1, X2, . . . , Xn, that follow a distribution f . Assume that E(Xi) = m and
σ2(Xi) = s2. (Note that m and s are determined by the distribution f .)

The Central Limit Theorem also tells us that (for standard distributions) the
probability distribution of the variable Y =

∑
i(Xi −m)/s

√
n is well approxi-

mated by the normal distribution N(0, 1), where m and s are as above.

Putting X = (
∑

i Xi)/n, we see that X = (Y (s/
√
n)+m, so that the probability

distribution for the estimator X is well approximated by N(m, (s/
√
n)2). (This

is a bit misleading since the n appears inside the limiting distribution!) This
can be used to justify the use of this normal distribution as the probability
distribution of the estimator X for the parameter m = E(Xi) of the distribution
f .

Note that, since Xi’s are independent random variables, we have

σ2(X) =
∑

i

σ2(Xi)/n2 = s2/n

Now, since we do not know the distribution f beforehand, we do not know m or
s either. (Which is why we are using data to estimate them!) We thus often use
the sample variance (1/n − 1)

∑
i(Xi −X)2 as an unbiased estimator for the

variance s. (We note that for large n there is little difference between dividing
by n and dividing by n− 1.)

In summary, we use the sample mean X as an unbiased estimator for the principal
parameter m of the distribution. Further, we approximate the probability
distribution of this estimator by the Normal distribution whose variance is given
by the sample variance. For large n this gives us a useful description of the
(probabilistic) behaviour of the estimate.

In particular, if M is the sample mean and S is the sample variance for a large
data set, then we can use [M − 2S/

√
n,M + 2S/

√
n] as an interval for the value

of m with a high (95%) probability. (We can replace 2 by 3 or 1.5 or another
value as dictated by our requirements.)

The following two sections are provided for complete-ness of exposi-
tion. We will not be doing any problems dealing with them. Both of
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these are used to improve the above approximations.

Student’s t-distribution

For not too large values n, the above argument does not work well. However,
there are many cases where we can feel confident that the distribution f of the
variables Xi is in fact a normal distribution of type N(m, s2). In this case, it
was shown by W. H. Gosset (who published under the pseudonym “Student”)
that we can correct for the fact that n is not too large.

As before we take the sample mean

X = 1
n

n∑
i=1

Xi

We also take the sample variance

S2 = 1
n− 1

n∑
i=1

(Xi −X)2

The random variable
M = X −m

S/
√
n

can be shown to follow a distribution called “Student’s t-distribution with n− 1
degrees of freedom”. Statistical tests that make use of this distribution are called
Student’s t-tests.

Chi-squared distribution

As seen above, the sample variance is an unbiased estimator for the variance of
the distribution. Hence, it too has a probability distribution! When we assume
(as above) that the results Xi of our experiments follow a normal distribution
N(m, s2), one can show (Cochran’s theorem) that the sample variance (random
variable S defined above) follows a scaled Chi-squared distribution. Put differ-
ently, one can show that (n− 1)S2/s2 follows the distribution χ2

n−1 (where the
latter is a distribution that we have not defined!).

This theorem leads to statistical tests. Such as a test of the hypothesis that a
certain population does actually follow a normal distribution or that the data
does in fact have n− 1 degrees of freedom and other such tests. All such tests
are lumped together under the broad banner of Chi-squared tests.
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