
Discrete Random Variables

So far, we have described probability in terms of events. How are events
demarcated? The answer is “by the values of random variables.”

One way to think about a random variable is that it is the result of an experiment
which has some “random”-ness intrinsic to it. No one would like to admit that
their “controlled” experiments have such a random element in them. However, in
most experiments there are factors that are beyond the control of the experimenter
that contribute to the fact that the outcome is not as deterministic as idealized.
A typical example is the standard pendulum experiment in physics which does
not give exactly the same answer every time.

In general, a random variable can take values anywhere, in integers, in real
numbers, in a group and so on. In most cases, in this course we will deal with
real-valued random variables. In this lecture, we will primarily deal with the
case when the random variable takes “discrete”, well-separated values. Usually,
these values will be among the integers as those are mathematically nice to deal
with.

For example, we have a random variable F associated with a coin flip which
takes two values 0 for Tail and 1 for Head; so the event H of Head is the same
as F = 1.

However, random variables are also most useful when the possible values are
infinite. Consider the experiment where we repeatedly flip an unbiased coin
until we get a Head. Let W be the random variable that counts the number of
flips needed. The event W = n is the same as Hc

1 ∧ · · · ∧Hc
n−1 ∧Hn where Hi

represents Head on the i-flip.

As another example, consider the random variable Ck that counts the number
of heads obtained in k independent flips of the same coin. If the random
variables for the result of each flip in sequence are denoted F1, F2, . . . , Fk. Then
Ck = F1 + · · ·+ Fk.

If we conduct an experiment of asking a randomly chosen student from the class,
her/his Hostel of residence, the result R is a random variable as well. The values
of R are in the set {5, 6, 7, 8} which is discrete.

Probability distribution of a Random Variable

Given a random variable X, an event is described by giving a (restricted) range
of values for it; hence there is a probability associated with it.

For example, P (F = 1) = 1/2 and P (F = 0) = 1/2 for a fair coin. If the coin
is not fair, then we have P (F = 1) = p and P (F = 0) = 1− p, where p is the
probability of a head so that (1− p) is the probability of a tail.
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As seen above W = n is the event Hc
1 ∧ · · · ∧Hc

n−1 ∧Hn so if P (Hi) = p and
the distinct Hi are independent, we see that P (W = n) = (1− p)n−1p.

In the previous section we had seen that if 40 students out of 200 are in Hostel
5, then P (R = 5) = 40/200 = 1/5.

Also in the previous section we had calculated (for a fair coin) that

P (Ck = r) =
(

k
r

)
2k

We note the identity

2k = (1 + 1)k =
k∑

r=0

(
k

r

)
This shows us that

k∑
r=0

P (Ck = r) = 1

More generally, when a random variable X takes discrete values (for simplicity
we will always assume these are labelled by the integers!), then we probabilities
P (X = i) = pi which satisfy 0 ≤ pi ≤ 1. Now, it is clear that the events X = i
for different i are mutually exclusive and, as we run over all i are exhaustive.
Thus, we have the condition that

∑
i pi = 1. In fact, if we have an event E that is

described by some well-prescribed subset of values for X, then P (E) =
∑

i∈E pi.
The behaviour of the random variable X is largely determined by the collection
(pi)i which is called its probability distribution. We can “plot” it like the
histograms of frequency we plotted earlier.

For example, suppose that S represents the discrete collection of sequences of
length k of heads and tails. These are all the values of a random variable X
that records the sequence of heads and tails obtained in an experiment that
has performs k independent flips of a coin. Suppose that the probability of
obtaining head on that coin is p. For each sequence b, the probability P (X = b)
is given by pr(b)(1− p)k−r(b) where r(b) is the number of heads in the sequence b.
Now, suppose that as above Yk is the random variable that counts the number
of heads obtained. We see that Yk = r is the union of the events X = b
where b is such that r(b) = r. Now, these are mutually exclusive events with
P (X = b) = pr(1 − p)k−r independent of b! It follows that we can calculate
P (Yk = r) by counting as before

P (Yk = r) =
(

k

r

)
pr(1− p)k−r

We note that
k∑

r=0
P (Yk = r) =

k∑
r=0

(
k

r

)
pr(1− p)k−r = 1

as expected. The distribution as above is called the Binomial distribution and
we say that Yk is a variable that follows the Bionomial distribution.
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Algebra of Random Variables

Whatever algebraic rules exist for combinations of the values of random variables
also exist for combinations of the random variables themselves. Specifically, if
X, Y are real-valued random variables, then we can form cX (for a real number
c), X + Y , X · Y , min X, Y and so on. If P (Y = 0) = 0, then we also have
X/Y . There is also a “constant” random variable c which takes the value c with
probability 1 and any other value with probability 0.

An important example, is that of the distribution function for the random
variable Ck that counts the number of Heads in k flips. As we saw above,
Ck = F1 + F2 + · · ·+ Fk, where Fi is the random variable associated with each
flip.

This example can be used to understand that FX+Y is not FX + FY ; in fact,
the latter is not the distribution function of a random variable since it can take
values bigger than 1!

Our further study of probability will be based on random variables and the
events defined by restrictions on the values of random variables.
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