Expectation, Moments and Weak Law

1. Suppose that a discrete random variable X takes different values in the set $\{-2, -1, 0, 1, 2\}$ with the probabilities given as below:

Value	-1	0	1	2
Probability	1/10	2/5	1/5	1/10

Answer the following questions:

- 1. What is the value of P(X = -2)?
- 2. What is the value of E(X)?
- 3. Suppose Y is another random variable with distribution identical to X. What is E(X + 1/(Y + 3))
- 4. What is the variance $\sigma^2(X)$?
- 2. Let X and Y be distinct real valued random variables.
 - 1. For all real numbers a and b check that $a^2 E(X^2) + 2abE(XY) + b^2 E(Y^2)$ is a non-negative number. (Hint: What is its relation with $E((aX + bY)^2)$?)
 - 2. Suppose A, B and C are real numbers such that $A + 2Bt + Ct^2 \ge 0$ for all real numbers t show that $AC \ge B^2$.
 - 3. Use the above two steps to conclude that $E(XY)^2 \leq E(X^2)E(Y^2)$.
 - 4. Check that E((X E(X))(Y E(Y))) = E(XY) E(X)E(Y). (Hint: Expand!)
 - 5. Let us define c(X, Y) = E(XY) E(X)E(Y). Show that $c(X, Y)^2 \le \sigma^2(X)\sigma^2(Y)$. (Hint: Apply steps 1-3 to X - E(X) and Y - E(Y).)
 - 6. Show that c(X, Y) = 0 if X and Y are independent.

The number c(X, Y) is called the covariance of X and Y. Assuming that $\sigma^2(X)\sigma^2(Y)$ is non-zero, the ratio $\rho(X, Y) = c(X, Y)/\sigma(X)\sigma(Y)$ is called the correlation of X and Y. It lies between -1 and 1.

- 3. Suppose that X and Y are independent random variables.
 - 1. Show that aX and bY are independent random variables for any non-zero constants a and b.
 - 2. Let U = X + Y and V = 2X 3Y. Calculate E(U), $\sigma^2(U)$, E(V) and $\sigma^2(V)$ in terms of E(X), $\sigma^2(X)$, E(Y) and $\sigma^2(Y)$.
 - 3. Let W = 3X 2Y = U + V. Calculate E(W) and $\sigma^2(W)$ in terms of E(X), E(Y), $\sigma^2(X)$ and $\sigma^2(Y)$.
 - 4. Check whether U and V are independent.

This exercise shows that independence is quite a different notion from what one might think since X and Y (which are independent) can be written linearly in terms of U and V which are not independent!

- 4. Given any two positive numbers a and b such that b < a and $a^2 = k(a b)$ for some positive integer k. Show that there is a random variable X such that E(X) = a and $\sigma^2(X) = b$. (Hint: Consider a suitable Binomial random variable.)
- 5. Given any two positive numbers a and b such that a < b and $a^2 = k(b a)$ for some positive integer k. Show that there is a random variable X such that E(X) = a and $\sigma^2(X) = b$. (Hint: Consider a suitable Negative Binomial random variable.)

Note that, in fact, given any real number a and any positive number b, we can define a random variable with E(X) = a and $\sigma^2(X) = b$. (The sign of a does not matter since E(-X) = -a. The tricky part is getting the case |a| = b!)

6. Suppose we flip a fair coin 100 times. Using Chebychev's inequality, estimate the probability that we see between 40 and 60 heads.