Boolean Algebra

Boolean algebras arise in a number of different ways.

Power Set of a Set

Given a set S, we have certain algebraic operations on subsets of S. These are:

e AN B is the collection of all elements of S that are in A as well as B. It is
called the intersection of the two subsets.

e AU B is the collection of all elements of S that are either in A or in B. It
is called the union of the two subsets.

e AC is the collection of all elements of S that are not in A. It is called the
complement of the set A

o A\ B is the collection of all elements of S that are in A but not in B. This
is called the difference of A from B.

There are some natural relations between these operations. For example,

« (AUB) = (A°N BY)°
« (A\B)=ANB*

Thus, all the operations can be defined in terms of N and ()¢. Moreover, we have
relations like the following among these operations.

¢« (ANB)NC=AN(BNCQC)

e AN A°=5°= ¢, where ¢ denotes the empty set.
e« ANS=A

o (A9 =A

If we use P(S) to denote the collection of subsets of S, then these operations
put an algebraic structure on P(S) which makes it a “Boolean algebra”.

Basic set-theory is all about finding out which identities are true in this Boolean
algebra. In high-school, we learned to do these using Venn diagrams. This
is not too difficult for identities involving 2 or 3 sets but becomes much more
complicated after that. Hence, we will look at a different approach below.

Propositional Logic

Propositional logic deals with “propositions” (also called “statements” or “as-
sertions”). These are statements that have definite true or false values. For
example:



e This is lecture hall 6
o We are studying MTH102

e It is cold in January in Mohali

We will denote propositions by capital letters of the Roman alphabet. Proposi-
tions can be combined to produce new propositions.

e AN B represents the combination A ‘and’ B. This proposition is only true
when both A and B are true.

e AV B represents the combination A ‘or’ B. This proposition is true
whenever either or both of A and B are true.

o —A represents the negation of A (‘not’ A). It is true exactly when A is

false.

These are the basic operations of “Propositional Calculus”. We have some natural
properties of these operations:

« ANA=A=AVA
« 2(AAB)=(-A)V (-B).
. —(=4) = A

Further, if we use 0 for ‘false’ and 1 for ‘true’, then we have some more identities:

BAC)=(AANB)ANC.
e« AV(BVC)=(AVB)VC.
« AVB=(BVA).
e« ANB=(BAA).
e AN(BVC)=(AANB)V(AANC).
We note the similarity of these identities with those for the subsets of a set. In

fact, if we replace A with N, V with U and taking complements with negation,
we have ezactly the same relations as the ones above!

This shows that there is a common algebraic structure to both systems. In the
next section, we will see how to understand this similarity conceptually.

In your course (IDC102) on electronics you must have encountered ‘nand’ gates
which are defined by At B = =(A A B). You must have also learned that all
other operations can be obtained from this by using the identities:



¢« 2(A)=AtA

« AVB=(AtA)t(B1B)

« ANB=(AtB)t(AfB)
A construct called “Truth Tables” gives us a good way to check for the possible
true/false values for an expression involving propositions A, B, C and so on. We

put 0 or 1 as the value for each of the component propositions and look at the
value of the combined statement. For this we need the basic table:

A B AANB AVB -A

= = O O

0
0
0
1

— = = O

1
1
0
0

= o = O

While this is more convenient than Venn diagrams, it is still cumbersome for
combining a large number of basic propositions as the number of rows is 2¥ when
there are k component basic propositions.

Indicator functions

To see the algebraic structure in both cases above more clearly, we will look at
them in a slightly different way.

Given a subset A of S. For any element s of S, the statement s € A is a
proposition which can be true or false. Moreover, we see that:

o (s€ A)A(s € B)is the same as s € AN B.
e (s€ A)V (s € B)is the same as s € AU B.
e —(s € A) is the same as s € A°.

We can think of the possible truth values of the proposition s € A corresponding
to different s in .S by think of a “variable” s. We are thus led to the indicator
function of A defined by:

(s) 1 ifseA
S) =
xa 0 ifsgA



It follows that A is precisely the set of s € S for which x4(s) = 1. Conversely,
given a map f:S — {0,1}. The subset A; of S is defined as the collection of
elements s of S for which f(s) = 1.

It is clear that A, , = A and x4, = f, so this is a natural one-to-one correspon-
dence between functions from S to {0,1} and subsets of S.

We note that the above truth table for propositions has an analogue for the
indicator function values:

XA XB XAnB XAVB  XAc

0 0 0 0 1
0 0 1 1
1 0 0 1 0
1 1 1 1 0

However, there is a more convenient way of doing this using arithmetic.

* XAnB = (XA) : (XB)
® XAe = XS — XA

where the operations on the right-hand side are the usual operations on functions.
We note that the function yg is identically 1 for all elements of S, so it can also
be called the constant function 1. Similarly, the indicator function x4 of the
empty set takes the value 0 for all elements of S and can be considered as the
constant function 0.

The usual sum of indicate functions is not an indicator function. Hence, it is
convenient to define a new operation @ on {0,1} by the relations

0p0=0=101001=1=1d0

This can also be seen as addition modulo 2. One can check that this addition
has the usual properties with respect to multiplication on the set {0, 1}.

In terms of this operation we see that x 4 = 1@ x 4. Using the above description
of the union in terms of complements and intersections, we see that

XAuB = 1@ XacnBe = 1@ Xae - XBe =
lo(loxa)(l@xs)=101®xa®XxBDXAXB =
XA D XB D xaXxB



Similarly,
XA\B = XAnBe = XA(1 ® XB) = x4 ® xaxB

We also note that the following two useful identities hold.

XA®xa=0and xa-xa=xa

Using these identifications, any operation involving subsets of S can be converted
into an algebraic operation involving the associated indicator functions. This
clearly makes calculations involving large numbers of sets easier to write down.

We note that the truth table for x4 & xp is:

XA XB XADPXxB
0

0 0
1 0 1
0 1 1
1 1 0

This table is similar to the truth table for the “exclusive or” operation between
propositions (sometimes called “xor”) which we can thus denote also by @. When
P and (@) are propositions:

e P & (Q represents the combination P ‘or’ () but ‘not both’

This can be written as P& Q = (PVQ)A—-(PAQ). Thus if we use the suggestive
notation P ® @ in place of P A @), then the above rules simplify into the familiar
algebraic rules:

¢+ PR(QOPR)=PRQDP®R.

e« Pp0=P
e« PR1=P.
e« P0=0.

Along with these familiar rules, we have the slightly unfamiliar rules P & P =0
and P ® P = P. This again allows us to replace calculations in propositional
logic (also called propositional calculus) into algebraic calculations using the
rules given above.



The notion of “Boolean Algebra” abstracts these two examples. We can define
a Boolean algebra (B, ®, ®) as a set B with two operations & for addition and
® for multiplication. Moreover, there are elements 0 and 1 in B so that all the
rules written above for propositions become true with these operations and these
elements. In other words, we have the usual rules of addition and multiplication.
Moreover, the special additional rules are A- A = A and A+ A = 0; these are
what makes the algebra “Boolean”.

For all practical purposes, we can think of a Boolean algebra as a sub-collection
of P(S) which is closed under taking unions, intersections and complements and
contains the set S as well. (Hence, it also contains the empty set which is the
complement of S!)

Alternatively, we can think of a Boolean Algebra as a collection of combinations
of statements which may turn out to be true or turn out to be false.
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