Solutions to Assignment 12

1. A box contains 3 coins C_{1}, C_{2} and C_{3} with probability of head as $1 / 4,1 / 2$ and $3 / 4$ respectively. You pick a coin out of the box but you don't know which one it is so you assign a a priori probability of $1 / 3$ for each choice of coin. You flip the coin 120 times and get 70 heads. What is the a posteriori probability that you will assign to each choice of coin.

Solution: Let X be the random variable that counts the number of heads and C be the random variable that indicates the choice of coin. We have the following calculations

$$
\begin{aligned}
& P\left(X=70 \mid C=C_{1}\right)=\frac{3^{50}}{4^{120}} \\
& P\left(X=70 \mid C=C_{2}\right)=\frac{1}{2^{120}} \\
& P\left(X=70 \mid C=C_{3}\right)=\frac{3^{70}}{4^{120}}
\end{aligned}
$$

We combine this with $P\left(C=C_{i}\right)=1 / 3$ to get

$$
P(X=70)=(1 / 3) \frac{3^{50}+2^{120}+3^{70}}{4^{120}}
$$

We now calculate using Bayes rule

$$
P\left(C=C_{i} \mid X=70\right)=\frac{P\left(X=70 \mid C=C_{i}\right) P\left(C=C_{i}\right)}{P(X=70)}
$$

This gives us

$$
\begin{aligned}
& P\left(C=C_{1} \mid X=70\right)=\frac{3^{50}}{3^{50}+2^{120}+3^{70}} \\
& P\left(C=C_{2} \mid X=70\right)=\frac{2^{120}}{3^{50}+2^{120}+3^{70}} \\
& P\left(C=C_{3} \mid X=70\right)=\frac{3^{70}}{3^{50}+2^{120}+3^{70}}
\end{aligned}
$$

Since the event $X=70$ has already taken place, this gives the new probability estimates for the choice of the coin.
2. In order to check a coin for bias, it is flipped a large number of times. In 10000 flips it shows heads 4844 times. Calculate the likelihood ratio between the maximum likelihood value for p and 0.5 . Would you take the coin as unbiased or not? Justify your answer.

Solution: The maximum likelihood value for p is .4844 . We calculate the loglikelihood as

$$
4844 \log (p)+(10000-4844) \log (1-p)
$$

Note that this is the same as $10000 \cdot S_{p}$ where

$$
S_{p}=p \log (p)+(1-p) \log (1-p)
$$

On the other hand, if the coin was unbiased, the log-likelihood of the event is

$$
4844 \log (0.5)+(10000-4844) \log (0.5)=10000 \log (0.5)
$$

Thus, the difference between the log-likelihoods is

$$
10000\left(S_{p}-\log (0.5)\right.
$$

The likelihood ratio is $\exp \left(10000\left(S_{p}-\log (0.5)\right)\right)$. We can calculate this to be approximately 130.
To understand this ratio we compare it with the ratios for a completely biased coin. In that case, the ratio turns out to be 2^{k} for k flips of the coin. Thus, taking logarithm to the base 2 . We have

$$
k^{\prime}=10000\left(S_{p} / \log (2)-\log (0.5) / \log (2)\right)=10000\left(s_{p}+1\right)
$$

where $s_{p}=p \log _{2}(p)+(1-p) \log _{2}(1-p)$. In our case this is roughly 7 .
Thus, calling our coin biased is like deciding that a coin shows only heads (or is extremely likely to show heads) after seeing this other coin getting 7 heads in a row.
3. In order to check a coin for bias, it was flipped a large number of times. With 10000 flips it turns up 4913 heads.
(a) What is an assertion that we can make with 70% confidence?
(b) What is an assertion that we can make with 95% confidence?
(c) What is an assertion that we can make with 99% confidence?

Solution: Let X_{i} denotes the random variable that gives 1 for Head and 0 for Tail on the i-th toss. Suppose there are r heads out of n tosses. The sample mean m of the X_{i} 's is r / n. The sample variance can also be calculated as

$$
\frac{r \cdot(1-r / n)^{2}+(n-r)(0-r / n)^{2}}{n-1}
$$

This can be simplified to $\frac{r n-r^{2}}{n(n-1)}$. Its square root, the sample standard deviation σ can be written as $m \sqrt{t}$ where $t=\frac{n(n-r)}{r(n-1)}$. Now $t-1=\frac{n^{2}-2 n r+r}{r(n-1)}$ is small in many
cases and we can use the Binomial theorem to approximate sqrtt as

$$
\sqrt{t} \simeq 1+\frac{t-1}{2}=\frac{t+1}{2}
$$

The latter is $(t+1) / 2=\frac{n^{2}-r}{2 r(n-1)}$ which is easily calculated. Since n is large in most cases, we can also approximate it as $\frac{n^{2}-r}{2 r n}=1 / 2 m-1 / 2 n$. To summarise, we can approxiate σ as $1 / 2-m / 2 n=1 / 2\left(1-r / n^{2}\right)$. Warning: This approximation is only good for large n and when $t-1$ is small.
In our case $m=r / n=.4913$, so $\sigma \simeq 1 / 2(1-4913 / 20000) \simeq 0.4999$. We thus have $s=\sigma /$ sqrtn $\simeq .0049$. The intervals we have to look at are $[m-k s, m+k s]$ for $k=1,2,3$.
Now for $k=1$, we see that .5 (unbiased coin) does not lie in this interval. Thus we can assert with 70% confidence that the coin is biased.

One the other hand for $k=2$ (and hence for $k=3!$) we see that .5 lies in this interval. Thus we can assert with 99% confidence that the hypothesis that the coin is unbiased cannot be rejected.

Think about why the above two statements do not entirely contradict each other!

