
Many Random Variables

So far we have mostly dealt with a single real-valued random variable. We now
look at the study of a collection of random variables. We can think of this as a
single vector valued random variable X = (X1, . . . , Xn). However, what is the
distribution of this vector valued random variable and how is this related to the
distribution of the individual real valued random variables?

In what follows, we will give proofs using discrete random variables but the
proofs can be taken over to arbitrary random variables using limiting arguments.

Expectation

We calculate the expecation of a sum X + Y of two random variables X and Y .

E(X + Y ) =
∑

a∈D;b∈D′

(a+ b)P (X=a;Y =b)

=
∑

a∈D;b∈D′

aP (X=a;Y =b) +
∑

a∈D;b∈D′

bP (X=a;Y =b)

The first sum on the right hand side can be written as a pair of summations

∑
a∈D;b∈D′

aP (X=a;Y =b) =
∑
a∈D

a

(∑
b∈D′

P (X=a;Y =b)
)

Note that Y =b are mutually exclusive events so that exactly one of them must
occur. Hence

(X=a) = ∨b∈D ((X=a) ∩ (Y =b))

is a disjoint union. It follows that

P (X=a) =
∑
b∈D′

P (X=a;Y =b)

A different way to see this is as follows. Now, Y = b are mutually exclusive
events for different b ∈ D′. Moreover, 1=

∑
b∈D′ P (Y =b). The decomposition

law states that for mutually exclusive events Bb so that
∑

b P (Bb)=1, we have
P (A)=

∑
n P (A ∩Bn). We then obtain

∑
a∈D

a

(∑
b∈D′

P (X=a;Y =b)
)

=
∑
a∈D

aP (X=a) = E(X)
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Similarly, the second sum gives us E(Y ).

We deduce that for any (finite) collection of random variables E(X1 + · · ·+Xn) =
E(X1) + · · ·+ E(Xn); the expectation of the sum is the sum of the expecations.

Covariance

We can try to apply a similar idea to the problem of determining E(XY ).

E(X · Y ) =
∑

a∈D;b∈D′

(ab)P (X=a;Y =b)

=
∑
a∈D

a

(∑
b∈D′

bP (X=a;Y =b)
)

The problem is that we do not appear to have any control over the latter sum
since the “b is inside”! So we seem to need the identity

P (X=a;Y =b) = P (X=a)P (Y =b)

Recall that this will follow if X=a and Y =b are independent events. If this is
the case, then the above sum simplifies

∑
a∈D

a

(∑
b∈D′

bP (X=a;Y =b)
)

=

∑
a∈D

a

(∑
b∈D′

bP (X=a)P (Y =b)
)

=

∑
a∈D

aP (X=a)
(∑

b∈D′

bP (Y =b)
)

=

E(X)E(Y )

However, without that crucial ingredient, we do not have the the identity
E(XY ) = E(X)E(Y ). More generally, the difference Cov(X,Y ) = E(XY ) −
E(X)E(Y ) is called the Covariance of the random variables X and Y .

For any constants a and b we can apply the additivity of expectations to obtain

E((aX + bY )2)) = a2E(X2) + 2abE(XY ) + b2E(Y 2)

On the other hand
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E((aX + bY ))2 = (aE(X) + bE(Y ))2 = a2E(X)2 + 2abE(X)E(Y ) + b2E(Y )2

Hence,

σ2(aX + bY ) = a2σ2(X) + 2abCov(X,Y ) + b2σ2(Y )

Since σ2(Z) ≥ 0 for any real valued random variable, we see that σ2(aX+bY ) ≥ 0
for all a and b. It follows (by completing the square) that

Cov(X,Y )2 ≤ σ2(X)σ2(Y )

It is thus useful to think of the correlation which is defined as

ρ(X,Y ) = Cov(X,Y )
σ(X)σ(Y )

as the cosine of an “angle” between X and Y (this makes sense only if σ(X)
and σ(Y ) are non-zero!). If the angle is acute then X “pulls Y towards it” and
otherwise, it “pushes it away”. In both cases, X and Y are “correlated”. On the
other hand, if X and if the covariance is 0, then the “angle” is a right angle and
we can say that X and Y are “un-correlated”.

Independence

Two random variables X and Y are said to be independent of each other if the
events X ≤ x and Y ≤ y are independent:

P (X ≤ x;Y ≤ y) = P (X ≤ x)P (Y ≤ y)

We note that the usual decomposition of probabilities gives us

P (a < X ≤ b; c < Y ≤ d) =
P (X ≤ b;Y ≤ d)− P (X ≤ a;Y ≤ d)

− P (X ≤ b;Y ≤ c) + P (X ≤ a;Y ≤ c)

If the random variables are independent, we see that this gives
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P (a < X ≤ b; c < Y ≤ d) =
P (X ≤ b)P (Y ≤ d)− P (X ≤ a)P (Y ≤ d)

− P (X ≤ b)P (Y ≤ c) + P (X ≤ a)P (Y ≤ c)

Now the right-hand side is the same as

(P (X ≤ b)− P (X ≤ a)) · (P (Y ≤ d)− P (Y ≤ c))
= P (a < X ≤ b) · P (c < Y ≤ d)

So we can re-state the independence of X and Y as

P (a < X ≤ b; c < Y ≤ d) = P (a < X ≤ b) · P (c < Y ≤ d)

By the result on Covariance above, we see that if X and Y are independent,
then Cov(X,Y )=0. Warning: The converse is not necessarily true!

More generally, we can define a finite collection of random variables Xi for
i=1, . . . , n to be independent of

P (X1 ≤ a1; . . . ;Xn ≤ an) = P (X1 ≤ a1) · · ·P (Xn ≤ an)

Warning: Note that if X is idependent of Y and Y is independent of Z, then it
does not follow that X is independent of Z; for example, X and Z could be the
same variable in which case they are correlated!

Warning: Just because the distribution of two variables is different, it does not
mean that they are independent. In many cases, the distributions of X and X2

are quite different, however, they are not independent.

Warning: Just because the distribution of two variables is the same it does not
mean that they are not independent. In fact, when we try to carry out the same
experiment a number of times, we(often) want the result of each experiment to
be independent and identically distributed. A number of questions in probability
deal with Independent, Identically Distributed (or i.i.d.) random variables.

An important consequence of independence of the random variables Xi is that
in this case

σ2(X1 + · · ·+Xn) = σ2(X1) + · · ·+ σ2(Xn)

We will use this identity in what follows.
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