
Review of Analysis

Since we are going to use limits in a significant way, it will be good to review
some key ideas from analysis.

Asymptotic Behaviour

It is useful to compare the behaviour of two functions f(x) and g(x) as x
approaches some value (say 0) or approaches infinity. Since x approaching x0 is
the same as 1/(x− x0) approaching infinity and that is the most interesting case
for us, we will state the conditions only in the case of x approaching infinity.

We say that f(x) = O(g(x)) as x approaches infinity if there is a constant M
so that f(x) ≤Mg(x) for all sufficiently large x (more precisely, for x > N for
some N). In other words, f(x) is bounded by a constant multiple of g(x) when
x is sufficiently large.

We say that f(x) = o(g(x)) as x approaches infinity if for any positive integer n,
f(x) < g(x)/n for sufficently large x (more precisely, for x > Nn for some Nn,
which is allowed to depend on n). In other words, f(x) is much smaller than
g(x) for sufficiently large x.

We say that f(x) ' g(x) as x approaches infinity if f(x)/g(x) approaches 1 as
x approaches infinity. In this case we say that f(x) and g(x) are asymtotically
equal as x approaches infinity.

A Poynomial P (x) = c0x
k + c1x

k−1 + . . .c k with c0 6= 0 is called a polynomial
of degree k. We have P (x) = O(xk) and P (x) = o(xm) for m > k. In fact, we
have P (x) ' c0x

k.

Some Series and Functions

We have already discussed the geometric series
∑∞

k=0 x
k which converges for

|x| < 1 to 1/(1 − x). We replace x by −x to get
∑∞

k=0(−x)k as summing to
1/(1 + x) for |x| < 1.

In fact, this convergence is absolute for |x| < 1 − 1/r for any positive r. This
makes the formulas work even if we integrate or differentiate term by term! So,
by differentiating the first series r times and dividing by r!, we get the formula:

1
(1− x)r+1 =

∞∑
k=0

(
k + r − 1

r

)
xk

We have already used this formula in order to study the Negative Binomial
distribution.
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Integrating this series once, we obtain:∫ x

0

dt

1 + t
=
∞∑

k=0

(−1)kxk+1

k + 1

The series (on the right-hand side) converges only for |x| < 1. However, the
integral (on the left-hand side) makes sense for all values of x. Hence, we define
log(x) =

∫ x

1 (dt/t) and only use the series expansion for |x| < 1.

The integral log(x) =
∫ x

1 (dt/t) has the interesting property

log(xy)− log(x) =
∫ xy

x

(dt/t) =
∫ y

1
(du/u) = log(y)

obtained by the substitution u = xt. In other words, x 7→ log(x) is a group
isomomorphism from the multiplicative group of positive real numbers to the
additive group of all real numbers. This makes it a very useful function. (Note
that for Mathematicians log always means the natural logarithm.) It follows
that for each positive x there is a unique y so that log(y) = x. Moreover, log is
order-preserving.

The inverse homomorphism exp is defined by log(exp(x)) = x. By the chain
rule, we see that

1 = d

dx
log(exp(x))) = d log(t)

dt
|t=exp(x)

d exp(x)
dx

= 1
exp(x)

d exp(x)
dx

It follows that d exp(x)/dx = exp(x). Thus, the Taylor series for exp(x) =∑∞
k=0 x

k/k!. By the comparison test one can show that this series converges for
all values of x.

Since exp is the inverse of a group isomorphism, it too is a group isomorphism
from the additive group of real numbers to the multiplicative group of positive
real numbers. For this reason, we often use the notation e = exp(1) and write
ex = exp(x).

Asymptotic formulas

The function 1/t can be compared with the step functions l(t) = 1/btc and
c(t) = 1/dte; we have c(t) ≤ 1/t ≤ l(t) for t ≥ 1. It follows that

n∑
k=2

(1/k) ≤ log(n) ≤
n−1∑
k=1

(1/k)

We see that
∑n

k=1(1/k) is asymptotic to log(n). In fact, we see that
n∑

k=1

1
k
− log(n) ≤ 1
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is a bounded increasing sequence and so it converges to a constant γ; this
constant is called the Euler-Mascheroni constant. In particular, since log(n) goes
to infinity as n goes to infinity, we have:

n∑
k=1

1/k →∞ as n→∞

We have d log(x)/dx = 1/x < 1 for x > 1. This means that log(x) < (1− x) for
x > 1 by integrating both sides. On the other hand d log(x)/dx = 1/x > 1 for
0 < x < 1. This again means that log(x) < x− 1 for 0 < x < 1 by integrating
both sides. Since log(1) = 0, we see that

log(x) < x− 1 for all x > 0

When x is large, we can do better. We have d log(x)/dx = 1/x < 1/n for x > n.
It follows that log(x) < log(n) + (1/n)x for x > n. From this we can deduce
that log(x) = o(x) as x approaches infinity.

The initial expansion of log(1 + x) = x− x2/2 + g(x) gives us

|g(x)| ≤
∞∑

k=3
xk/k ≤ (|x3|/3)

∞∑
k=0
|x|k = |x|3

3(1− |x|)

for |x| ≤ 2/3 we see that this is ≤ |x|3/3.

Fixing x and applying this to x/n for large n, we see see that n log(1 +x/n) ' x
as n approaches infinity. It follows that exp(n log(1 + x/n)) ' exp(x) as n
approaches infinity. This is usually written as

lim
n→∞

(
1 + x

n

)n

= ex

Moreover, from the fact that log(1 + x/n) < x/n proved above, we see that this
limit is an increasing one.

We easily check that d(x log(x)− x)/dx = log(x). It follows that∫ n

1
log(t)dt = n log(n)− n+ 1

We can form the Trapezoidal approximation of the integral on the left-hand side

n−1∑
k=1

log(k + 1)− log(k)
2 =

n∑
k=1

log(k)− 1
2 log(n) = log(n!)− 1

2 log(n)

The error in this approximation is given by

dn = log(n!)− (n+ 1/2) log(n) + n− 1
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We will not go through a computation to show that this error approaches a fixed
limit as n goes to infinity. We compute

dn+1 − dn = (n+ 1/2) log(1 + 1/n) + 1

Using the expression log(1 + x) = x− x2/2 + g(x) we get

dn+1−dn = (n+1/2)
(

1
n
− 1

2n2 + g(1/n)
)
−1 =

(
1− 1

4n2

)
−1+(n+1/2)g(1/n)

For n > 2 we have |g(1/n)| < 1/3n3 so that

|dn+1 − dn| ≤
1

4n2 + n+ 1/2
3n3 ≤ c/n2

for some suitable constant c. Since
∑∞

n=1 c/n
2 converges, by the comparison

test for series, we see that
∑∞

n=1(dn+1 − dn) converges to some number. The
sum

∑N−1
n=1 (dn+1 − dn) is easily calculated to be dN − d1. Hence, we see that

dN converges to some constant C as N approaches infinity. In other words,

lim
n→∞

(log(n!)− (n+ 1/2) log(n) + n− 1) = C

Exponentiating both sides gives us

n!
nne−n

√
n
→ K as n→∞

for a suitable constant K. (We will eventually determine K as well!) The
approximation

n! ' Knne−n
√
n for large n

was found by de Moivre; after putting in the value of K it is called Stirling’s
approximation.
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