Review of Analysis

Since we are going to use limits in a significant way, it will be good to review some key ideas from analysis.

Asymptotic Behaviour

It is useful to compare the behaviour of two functions $f(x)$ and $g(x)$ as x approaches some value (say 0) or approaches infinity. Since x approaching x_{0} is the same as $1 /\left(x-x_{0}\right)$ approaching infinity and that is the most interesting case for us, we will state the conditions only in the case of x approaching infinity.
We say that $f(x)=O(g(x))$ as x approaches infinity if there is a constant M so that $f(x) \leq M g(x)$ for all sufficiently large x (more precisely, for $x>N$ for some N). In other words, $f(x)$ is bounded by a constant multiple of $g(x)$ when x is sufficiently large.

We say that $f(x)=o(g(x))$ as x approaches infinity if for any positive integer n, $f(x)<g(x) / n$ for sufficently large x (more precisely, for $x>N_{n}$ for some N_{n}, which is allowed to depend on n). In other words, $f(x)$ is much smaller than $g(x)$ for sufficiently large x.

We say that $f(x) \simeq g(x)$ as x approaches infinity if $f(x) / g(x)$ approaches 1 as x approaches infinity. In this case we say that $f(x)$ and $g(x)$ are asymtotically equal as x approaches infinity.
A Poynomial $P(x)=c_{0} x^{k}+c_{1} x^{k-1}+\ldots{ }_{c} k$ with $c_{0} \neq 0$ is called a polynomial of degree k. We have $P(x)=O\left(x^{k}\right)$ and $P(x)=o\left(x^{m}\right)$ for $m>k$. In fact, we have $P(x) \simeq c_{0} x^{k}$.

Some Series and Functions

We have already discussed the geometric series $\sum_{k=0}^{\infty} x^{k}$ which converges for $|x|<1$ to $1 /(1-x)$. We replace x by $-x$ to get $\sum_{k=0}^{\infty}(-x)^{k}$ as summing to $1 /(1+x)$ for $|x|<1$.
In fact, this convergence is absolute for $|x|<1-1 / r$ for any positive r. This makes the formulas work even if we integrate or differentiate term by term! So, by differentiating the first series r times and dividing by r !, we get the formula:

$$
\frac{1}{(1-x)^{r+1}}=\sum_{k=0}^{\infty}\binom{k+r-1}{r} x^{k}
$$

We have already used this formula in order to study the Negative Binomial distribution.

Integrating this series once, we obtain:

$$
\int_{0}^{x} \frac{d t}{1+t}=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{k+1}}{k+1}
$$

The series (on the right-hand side) converges only for $|x|<1$. However, the integral (on the left-hand side) makes sense for all values of x. Hence, we define $\log (x)=\int_{1}^{x}(d t / t)$ and only use the series expansion for $|x|<1$.

The integral $\log (x)=\int_{1}^{x}(d t / t)$ has the interesting property

$$
\log (x y)-\log (x)=\int_{x}^{x y}(d t / t)=\int_{1}^{y}(d u / u)=\log (y)
$$

obtained by the substitution $u=x t$. In other words, $x \mapsto \log (x)$ is a group isomomorphism from the multiplicative group of positive real numbers to the additive group of all real numbers. This makes it a very useful function. (Note that for Mathematicians \log always means the natural logarithm.) It follows that for each positive x there is a unique y so that $\log (y)=x$. Moreover, \log is order-preserving.

The inverse homomorphism exp is defined by $\log (\exp (x))=x$. By the chain rule, we see that

$$
\left.1=\frac{d}{d x} \log (\exp (x))\right)=\left.\frac{d \log (t)}{d t}\right|_{t=\exp (x)} \frac{d \exp (x)}{d x}=\frac{1}{\exp (x)} \frac{d \exp (x)}{d x}
$$

It follows that $d \exp (x) / d x=\exp (x)$. Thus, the Taylor series for $\exp (x)=$ $\sum_{k=0}^{\infty} x^{k} / k!$. By the comparison test one can show that this series converges for all values of x.

Since \exp is the inverse of a group isomorphism, it too is a group isomorphism from the additive group of real numbers to the multiplicative group of positive real numbers. For this reason, we often use the notation $e=\exp (1)$ and write $e^{x}=\exp (x)$.

Asymptotic formulas

The function $1 / t$ can be compared with the step functions $l(t)=1 /\lfloor t\rfloor$ and $c(t)=1 /\lceil t\rceil$; we have $c(t) \leq 1 / t \leq l(t)$ for $t \geq 1$. It follows that

$$
\sum_{k=2}^{n}(1 / k) \leq \log (n) \leq \sum_{k=1}^{n-1}(1 / k)
$$

We see that $\sum_{k=1}^{n}(1 / k)$ is asymptotic to $\log (n)$. In fact, we see that

$$
\sum_{k=1}^{n} \frac{1}{k}-\log (n) \leq 1
$$

is a bounded increasing sequence and so it converges to a constant γ; this constant is called the Euler-Mascheroni constant. In particular, since $\log (n)$ goes to infinity as n goes to infinity, we have:

$$
\sum_{k=1}^{n} 1 / k \rightarrow \infty \text { as } n \rightarrow \infty
$$

We have $d \log (x) / d x=1 / x<1$ for $x>1$. This means that $\log (x)<(1-x)$ for $x>1$ by integrating both sides. On the other hand $d \log (x) / d x=1 / x>1$ for $0<x<1$. This again means that $\log (x)<x-1$ for $0<x<1$ by integrating both sides. Since $\log (1)=0$, we see that

$$
\log (x)<x-1 \text { for all } x>0
$$

When x is large, we can do better. We have $d \log (x) / d x=1 / x<1 / n$ for $x>n$. It follows that $\log (x)<\log (n)+(1 / n) x$ for $x>n$. From this we can deduce that $\log (x)=o(x)$ as x approaches infinity.
The initial expansion of $\log (1+x)=x-x^{2} / 2+g(x)$ gives us

$$
|g(x)| \leq \sum_{k=3}^{\infty} x^{k} / k \leq\left(\left|x^{3}\right| / 3\right) \sum_{k=0}^{\infty}|x|^{k}=\frac{|x|^{3}}{3(1-|x|)}
$$

for $|x| \leq 2 / 3$ we see that this is $\leq|x|^{3} / 3$.
Fixing x and applying this to x / n for large n, we see see that $n \log (1+x / n) \simeq x$ as n approaches infinity. It follows that $\exp (n \log (1+x / n)) \simeq \exp (x)$ as n approaches infinity. This is usually written as

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

Moreover, from the fact that $\log (1+x / n)<x / n$ proved above, we see that this limit is an increasing one.

We easily check that $d(x \log (x)-x) / d x=\log (x)$. It follows that

$$
\int_{1}^{n} \log (t) d t=n \log (n)-n+1
$$

We can form the Trapezoidal approximation of the integral on the left-hand side

$$
\sum_{k=1}^{n-1} \frac{\log (k+1)-\log (k)}{2}=\sum_{k=1}^{n} \log (k)-\frac{1}{2} \log (n)=\log (n!)-\frac{1}{2} \log (n)
$$

The error in this approximation is given by

$$
d_{n}=\log (n!)-(n+1 / 2) \log (n)+n-1
$$

We will not go through a computation to show that this error approaches a fixed limit as n goes to infinity. We compute

$$
d_{n+1}-d_{n}=(n+1 / 2) \log (1+1 / n)+1
$$

Using the expression $\log (1+x)=x-x^{2} / 2+g(x)$ we get
$d_{n+1}-d_{n}=(n+1 / 2)\left(\frac{1}{n}-\frac{1}{2 n^{2}}+g(1 / n)\right)-1=\left(1-\frac{1}{4 n^{2}}\right)-1+(n+1 / 2) g(1 / n)$
For $n>2$ we have $|g(1 / n)|<1 / 3 n^{3}$ so that

$$
\left|d_{n+1}-d_{n}\right| \leq \frac{1}{4 n^{2}}+\frac{n+1 / 2}{3 n^{3}} \leq c / n^{2}
$$

for some suitable constant c. Since $\sum_{n=1}^{\infty} c / n^{2}$ converges, by the comparison test for series, we see that $\sum_{n=1}^{\infty}\left(d_{n+1}-d_{n}\right)$ converges to some number. The sum $\sum_{n=1}^{N-1}\left(d_{n+1}-d_{n}\right)$ is easily calculated to be $d_{N}-d_{1}$. Hence, we see that d_{N} converges to some constant C as N approaches infinity. In other words,

$$
\lim _{n \rightarrow \infty}(\log (n!)-(n+1 / 2) \log (n)+n-1)=C
$$

Exponentiating both sides gives us

$$
\frac{n!}{n^{n} e^{-n} \sqrt{n}} \rightarrow K \text { as } n \rightarrow \infty
$$

for a suitable constant K. (We will eventually determine K as well!) The approximation

$$
n!\simeq K n^{n} e^{-n} \sqrt{n} \text { for large } n
$$

was found by de Moivre; after putting in the value of K it is called Stirling's approximation.

