Solutions to Quiz 4

1. Sita and Gita go to the village fair where there is a game where each has $2 / 5$-th chance of winning one round but they play it differently.

- Gita gets to play 10 rounds. Let G be the random variable that counts the number of rounds won by Gita.
- Sita can keep on playing until she loses 6 rounds. Let S be the random variable that counts the number of rounds won by Sita.
(1 mark)
(1 mark)
(1 mark)
(1 mark)
(a) What is the probability $P(G \leq 1)$?

Solution: The variable G is binomially distributed with probability of a single win as $p=2 / 5$ and number of trials is 10 . So

$$
P(G \leq 1)=\binom{10}{0}(3 / 5)^{10}+\binom{10}{1}(3 / 5)^{9}(2 / 5)
$$

(b) What is the mathematical expectation $E(G)$?

Solution: The variable G is binomially distributed as described above. So

$$
E(G)=10 \cdot(2 / 5)=4
$$

(c) What is the probability $P(S \leq 1)$?

Solution: The variable S is distributed as negative binomial with probability of failure $3 / 5$ and at number of failures allowed as 6 . So

$$
P(S \leq 1)=\binom{6-1}{0}(3 / 5)^{6}+\binom{1+6-1}{1}(3 / 5)^{6}(2 / 5)
$$

(d) What is the mathematical expectation $E(S)$?

Solution: The variable S is distributed according to negative binomial distribution as described above. So

$$
E(S)=6 \cdot \frac{2 / 5}{3 / 5}=4
$$

(e) (Bonus) Which of the two has a better chance of winning at least 2 rounds? Justify your answer.

Solution: Comparing the probabilities $P(G \leq 1)$ and $P(S \leq 1)$ we have

$$
\frac{P(G \leq 1)}{P(S \leq 1)}=\frac{(3 / 5)^{9} \cdot((3 / 5)+4)}{(3 / 5)^{6} \cdot(1+2)}=(3 / 5)^{3} \frac{23}{15}=\frac{23 \cdot 9}{5^{4}}<1
$$

Thus, $P(G \geq 2)>P(S \geq 2)$.

