
Aggregates

As we saw earlier, the probabilities associated with a (real-valued) random
variable X are described by the distribution function FX ; where FX(t) = P (X ≤
t). This is a non-decreasing function from (−∞,∞) to [0, 1] which tends to 0 on
the left (−∞) and to 1 on the right (+∞); in other words, it has an “S” shape.
Moreover, FX is right continuous.

There are essentially three kinds of behaviours possible for such functions:

• Discrete Jumps: In this case, there is a discrete subset D of the real line
so that the function is constant between two successive points of D. In
other words, P (X = t) 6= 0 if and only if t ∈ D.

• Density: In this case there is a (non-negative) function fX(t) called the
density function of X so that FX(t) =

∫ t

−∞ fX(s)ds. In this case, FX(t)
also called an absolutely continuous function.

• Devil’s Staircase: These are somewhat strange continuous functions (e.g.
Cantor’s function, Minkowski’s “?” function etc.) which only appear to
increase “when we are not looking”! More precisely, there is a decreasing
family of sets Dn so that l(Dn) < 1/n and the derivative of the function
exists and is zero outside Dn.

Due to the unusual nature of the third kind of functions, we will primarily focus
on the first and second kind; we will call these the “discrete” and “continuous”
case even though the second case should actually be called the “absolutely
continuous” case. In fact, to study more general probability distributions we
need to consider functions that exhibit a combination of the above behaviours.

Since there are still a large number of such functions, it is useful to find some
“characteristics” of each distribution that give us some qualitative aspect of its
behaviour. We shall consider such “aggregate” aspects in the current lecture.

Mean, Variance and Moments

The mathematical expection of X is defined as follows:

• Discrete Case: We define E(X) =
∑

d∈D dP (X = d).
• Continuous Case: We define E(X) =

∫ +∞
−infty

sfX(s)ds.

Of course, in each case, there is an underlying assumption that the sum or
integral exists! The mathematical expecation is also called the mean of the
random variable X.
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Suppose that the random variable X is “constructed” as follows. We have a
(finite) population Ω of distinct entities w (say people, cars, physical objects,
experiments and so on) and X(w) is a numerical attribute associated with each
entity (for example height of the person, the cost of a car, the volume of a
physical object, the result of an experiment and so on). We then have some
technique to pick elements of Ω “at random”. Usually, this means that any entity
in Ω is equally likely to be picked. In this case, it is not difficult to see that E(X)
is the same as the “average” of the numerical attribute over the population.

One of the powerful results in probability says that if we sample a population
properly, the average of the sample is (with high probability) close the mathe-
matical expectation E(X) of the whole population. Thus, even when we do not
know the actual probability distribution of X, we can estimate E(X).

In order to give meaning to the expression “close to E(X)”, we need to have some
ways of measuring the deviation of X from E(X). This is done by measuring
the expectation of (X − E(X))k for various values of k.

More generally, if φ is a real valued function of a single variable, then we define:

• Discrete Case: We define E(φ(X)) =
∑

d∈D φ(d)P (X = d).
• Continuous Case: We define E(φ(X)) =

∫∞
−infty

φ(s)fX(s)ds.

The Variance of the random variable X is defined as E((X − E(X))2 and is
denoted by σ2(X). More generally, the k-th moment of X about its mean is
E((X−E(X))k). The square root σ(X) of σ2(X) is called its standard deviation.
As we shall see later, it is a good measure (in a probabilistic sense) of how much
X deviates from its mean.

One important identity that simplifies computations of the moments is E(X +
aY +b) = E(X)+aE(Y )+b where a and b are constants andX and Y are random
variables. (Note that a constant c can be considered as “random” variable by
declaring P (c = c) = 1 and P (c = d) = 0 for c 6= d!)

Using this identity, we see that:

σ2(X) = E(X2−2E(X)X+E(X)2) = E(X2)−2E(X)2+E(X)2 = E(X2)−E(X)2

Moreover, since E(X + c) = E(X) + c, we also see that X + c − E(X + c) =
X − E(X) so that:

σ2(X + c) = E((X + c− E(X + c))2) = E((X − E(X))2) = σ2(X)

More generally, the higher moments of X and X + c are the same. This can be
used to simplify a number of calculations by choosing a suitable constant c that
reduces the size of the relevant values of X + c that we need to take powers of.
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Other Characteristics

In high school, we have learned the terms “median” and “mode”. The latter is
easier to define.

• Discrete case: mode is “the” value of the random variable which has the
highest probability; i.e. it is m where P (X = m) is the greatest among
all P (X = c) for all possible values of c. In other words, it is the “most
likely”.

• Continuous case: mode is “the” value for which the density function has
the highest value; i.e. it is m where fX(m) is the the greatest among all
possible fX(c) for all possible values of c.

The reason the “the” is in in quotes above is that such a value may not be
unique. Moreover, in the continuous case it may not even exist since it is not
too difficult (but a challenging exercise!) to write non-negative functions fX(t)
so that

∫ +∞
−∞ fX(t)dt = 1 but fX(t) is not bounded!

The median represents the smallest value of t so that FX(t) ≥ 1/2. (Recall
that FX(t) = P (X ≤ t) is the distribution function of X.) In other words, it is
m = inf{t|FX(t) ≥ 1/2}. Since FX is right continuous (by the “infinite” law of
probabilities), one can show that FX(m) ≥ 1/2.

More generally, for any number p between 0 and 1 we can look for the smallest
value of t so that FX(t) ≥ p; this value of t is called the p-th quantile. This is
specifically used to define “quartiles” for the case p = 0.25 (first quartile), p = 0.5
(median) and p = 0.75 (third quartile). It is also used to define percentile where
the P -th percentile represents the smallest value of t so that FX(t) ≥ P/100.

Coarse Statistics

The mean, median, mode, variance, quartiles and percentiles represent the coarse
(i.e. rough) information that we can gather about a population. Statistics is the
science (or art!) of trying to determine the distribution of numerical attributes
of a population by “sampling”; that is, measuring the numerical attributes of a
sample of the entities from among the population.

If a random variable X represents the numerical attribute of an entity chosen
randomly from the population (with all entities being equally likely), then the
mean, median, mode, variance, and so on of the variable X is the same as the
mean, median, mode, variance, and so on as computed by “high-school methods”.

We will see later that when we use a suitable sampling technique we can (with
high probability) get good estimates of these values from the same values for
the sample. This idea is a key one in statistics.
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Of course, it is unreasonable to ask for the p-quantile for all values of p unless
we can determine the probability distribution precisly. For, if:

φ(p) = inf{t|FX(t) ≥ p}

then
FX(t) = sup{p|φ(p) ≤ t}

Hence, the complete quantile function determines the distribution function.
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