Solutions to Assignment 3

1. Suppose that a discrete random variable X takes different values in the set $\{-2,-1,0,1,2\}$ with the probabilities given as below:

Value	-1	0	1	2
Probability	$1 / 10$	$2 / 5$	$1 / 5$	$1 / 10$

Answer the following questions:

1. What is the value of $P(X=-2)$?

Solution:

$$
P(X=-2)=1-\sum_{r=-1}^{2} P(X=r)=1 / 5
$$

2. What is the value of $E(X)$?

Solution:

$$
E(X)=\sum_{r=-2}^{2} r P(X=r)=(-2 / 5-1 / 10+0+1 / 5+2 / 10)=-1 / 10
$$

3. Suppose Y is another random variable with distribution identical to X. What is $E(X+1 /(Y+3))$

Solution: Since expectations are linear $E(X+1 /(Y+3))=E(X)+E(1 /(Y+$ 3). Since $1 /(Y+3)$ is a function of Y we have
$E(1 /(Y+3))=\sum_{r=-2}^{2}(1 / r+3) P(Y=r)=(1 / 5+1 / 20+2 / 15+1 / 20+1 / 50)=116 / 300$
4. What is the variance $\sigma^{2}(X)$?

Solution:

$$
E\left(X^{2}\right)=\sum_{r=-2}^{2} r^{2} P(X=r)=(4 / 5+1 / 10+0+1 / 5+4 / 10)=15 / 10
$$

We then calculate $\sigma^{2}(X)=E\left(X^{2}\right)-E(X)^{2}=149 / 100$.
2. Let X and Y be distinct real valued random variables.

1. For all real numbers a and b check that $a^{2} E\left(X^{2}\right)+2 a b E(X Y)+b^{2} E\left(Y^{2}\right)$ is a non-negative number. (Hint: What is its relation with $E\left((a X+b Y)^{2}\right)$?)

Solution: We note that
$E\left((a X+b Y)^{2}\right)=E\left(a^{2} X^{2}+2 a b X Y+b^{2} Y^{2}\right)=a^{2} E\left(X^{2}\right)+2 a b E(X Y)+b^{2} E\left(Y^{2}\right)$
the last equality is due to linearity of expectation.
2. Suppose A, B and C are real numbers such that $A+2 B t+C t^{2} \geq 0$ for all real numbers t show that $A C \geq B^{2}$.

Solution: If $C=0$, then $A+2 B t$ cannot be non-negative for all t unless $B=0$. In that case $B^{2}=0=A C$.
Let is assume that $C \neq 0$. We then get

$$
A+2 B t+C t^{2}=\left(A C-B^{2}\right) / C+(B+C t)^{2} / C
$$

Since this is positive for all t, we note that $A C-B^{2} / C \geq 0$. Now, for t large, the second term dominates, so $C>0$ as well. It follows that $A C-B^{2} \geq 0$.
3. Use the above two steps to conclude that $E(X Y)^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)$.

Solution: Combining these two results above we see easily that $E\left(X^{2}\right) E\left(Y^{2}\right) \geq$ $E(X Y)^{2}$.
4. Check that $E((X-E(X))(Y-E(Y)))=E(X Y)-E(X) E(Y)$. (Hint: Expand!)

Solution:

$E((X-a)(Y-b))=E(X Y-a Y-b X+a b)=E(X Y)-a E(Y)-b E(X)+a b$
Now putting $a=E(X)$ and $b=E(Y)$, we get

$$
\begin{aligned}
& E((X-E(X))(Y-E(Y)))= \\
& E(X Y)-E(X) E(Y)-E(Y) E(X)+E(X) E(Y)= \\
& E(X Y)-E(X) E(Y)
\end{aligned}
$$

5. Let us define $c(X, Y)=E(X Y)-E(X) E(Y)$. Show that $c(X, Y)^{2} \leq \sigma^{2}(X) \sigma^{2}(Y)$. (Hint: Apply steps 1-3 to $X-E(X)$ and $Y-E(Y)$.)

Solution:

$$
E\left((X-E(X))^{2}\right) E\left((Y-E(Y))^{2}\right) \geq E\left((X-E(X)(Y-E(Y)))^{2}\right.
$$

This is just a restatement of

$$
\sigma^{2}(X) \sigma^{2}(Y) \geq c(X, Y)^{2}
$$

6. Show that $c(X, Y)=0$ if X and Y are independent.

Solution: We have seen already that if X and Y are independent then $E(X Y)=$ $E(X) E(Y)$. Thus $c(X, Y)=0$. Note that $c(X, Y)=0$, then it need not be the case that X and Y are independent!

The number $c(X, Y)$ is called the covariance of X and Y. Assuming that $\sigma^{2}(X) \sigma^{2}(Y)$ is non-zero, the ratio $\rho(X, Y)=c(X, Y) / \sigma(X) \sigma(Y)$ is called the correlation of X and Y. It lies between -1 and 1 .
3. Suppose that X and Y are independent random variables.

1. Show that $a X$ and $b Y$ are independent random variables for any non-zero constants a and b.

Solution: (We assume that the variables are discrete. The continuous case is similar.)

$$
\begin{aligned}
& P((a X=r) \wedge(b Y=s))=P((X=r / a) \wedge(Y=s / b))= \\
& \quad P(X=r / a) \cdot P(Y=s / b)=P(a X=r) \cdot P(b Y=s)
\end{aligned}
$$

Thus, these are independent.
2. Let $U=X+Y$ and $V=2 X-3 Y$. Calculate $E(U), \sigma^{2}(U), E(V)$ and $\sigma^{2}(V)$ in terms of $E(X), \sigma^{2}(X), E(Y)$ and $\sigma^{2}(Y)$.

Solution: By linearity of expectation

$$
E(U)=E(X)+E(Y) \text { and } E(V)=2 E(X)-3 E(Y)
$$

Since $a X$ and $b Y$ are independent, we have

$$
\sigma^{2}(U)=\sigma^{2}(X)+\sigma^{2}(Y) \operatorname{and} \sigma^{2}(V)=4 \sigma^{2}(X)+9 \sigma^{2}(Y)
$$

3. Let $W=3 X-2 Y=U+V$. Calculate $E(W)$ and $\sigma^{2}(W)$ in terms of $E(X), E(Y)$, $\sigma^{2}(X)$ and $\sigma^{2}(Y)$.

Solution: As above we have

$$
E(W)=3 E(X)-2 E(Y) \text { and } \sigma^{2}(W)=9 \sigma^{2}(X)+4 \sigma^{2}(Y)
$$

4. Check whether U and V are independent.

Solution: Let us compare $\sigma^{2}(W)=\sigma^{2}(U+V)$ with $\sigma^{2}(U)+\sigma^{2}(V)$. The first one is $9 \sigma^{2}(X)+4 \sigma^{2}(Y)$ and the second one is $5 \sigma^{2}(X)+10 \sigma^{2}(Y)$. For most values of $\sigma^{2}(X)$ and $\sigma^{2}(Y)$ these numbers are different! Hence U and V are (in general) not independent.

This exercise shows that independence is quite a different notion from what one might think since X and Y (which are independent) can be written linearly in terms of U and V which are not independent!
4. Given any two positive numbers a and b such that $b<a$ and $a^{2}=k(a-b)$ for some positive integer k. Show that there is a random variable X such that $E(X)=a$ and $\sigma^{2}(X)=b$. (Hint: Consider a suitable Binomial random variable.)

Solution: Assume that $p=1-b / a$ and consider the Binomial random variable X that counts the number of successes in k Bernoulli trials with probability p of success. Then $E(X)=k(1-b / a)=k(a-b) / a=a$ and $\sigma^{2}(X)=k(b / a)(1-b / a)=b$.
5. Given any two positive numbers a and b such that $a<b$ and $a^{2}=k(b-a)$ for some positive integer k. Show that there is a random variable X such that $E(X)=a$ and $\sigma^{2}(X)=b$. (Hint: Consider a suitable Negative Binomial random variable.)

Solution: Assume that $p=1-a / b$ and consider the negative Binomial random variable X that counts the number of successes before finding k failures in a sequence of independent Bernoulli trials with probability p of success. Then $E(X)=k(1-$ $a / b) /(a / b)=k(b-a) / a=a$ and $\sigma^{2}(X)=k(1-a / b) /(a / b)^{2}=k(b-a) b / a^{2}=b$

Note that, in fact, given any real number a and any positive number b, we can define a random variable with $E(X)=a$ and $\sigma^{2}(X)=b$. (The sign of a does not matter since $E(-X)=-a$. The tricky part is getting the case $|a|=b!$)
6. Suppose we flip a fair coin 100 times. Using Chebychev's inequality, estimate the probability that we see between 40 and 60 heads.

Solution: Let X be the random variable that counts the number of heads. Then $E(X)=100 / 2=50$ and $\sigma^{2}(X)=100 / 4=25$. Chebychev's inequality in this case becomes

$$
P(|X-50|>10) \leq 25 / 10^{2}=1 / 4
$$

So the probability that we have between 40 and 50 heads is $1-1 / 4=3 / 4$ by this inequality.

Note that this is actually a very weak result. If you calculate it directly in terms of the Binomial distribution you get a number like 0.965 !

