Assignment 3

Solutions to Assignment 3

1. Suppose that a discrete random variable X takes different values in the set $\{-2, -1, 0, 1, 2\}$ with the probabilities given as below:

Answer the following questions:

1. What is the value of P(X = -2)?

Solution:

$$P(X = -2) = 1 - \sum_{r=-1}^{2} P(X = r) = 1/5$$

2. What is the value of E(X)?

Solution:

$$E(X) = \sum_{r=-2}^{2} rP(X=r) = (-2/5 - 1/10 + 0 + 1/5 + 2/10) = -1/10$$

3. Suppose Y is another random variable with distribution identical to X. What is E(X + 1/(Y + 3))

Solution: Since expectations are linear E(X + 1/(Y + 3)) = E(X) + E(1/(Y + 3)). Since 1/(Y + 3) is a function of Y we have

$$E(1/(Y+3)) = \sum_{r=-2}^{2} (1/r+3)P(Y=r) = (1/5+1/20+2/15+1/20+1/50) = 116/300$$

4. What is the variance $\sigma^2(X)$?

Solution:

$$E(X^2) = \sum_{r=-2}^{2} r^2 P(X=r) = (4/5 + 1/10 + 0 + 1/5 + 4/10) = 15/10$$
We then columbst $r^2(X) = E(X^2) = E(X)^2 = 140/100$

We then calculate $\sigma^2(X) = E(X^2) - E(X)^2 = 149/100.$

- 2. Let X and Y be distinct real valued random variables.
 - 1. For all real numbers a and b check that $a^2 E(X^2) + 2abE(XY) + b^2 E(Y^2)$ is a non-negative number. (Hint: What is its relation with $E((aX + bY)^2)$?)

Solution: We note that $E((aX+bY)^2) = E(a^2X^2 + 2abXY + b^2Y^2) = a^2E(X^2) + 2abE(XY) + b^2E(Y^2)$ the last equality is due to linearity of expectation.

2. Suppose A, B and C are real numbers such that $A + 2Bt + Ct^2 \ge 0$ for all real numbers t show that $AC \ge B^2$.

Solution: If C = 0, then A + 2Bt cannot be non-negative for all t unless B = 0. In that case $B^2 = 0 = AC$.

Let is assume that $C \neq 0$. We then get

$$A + 2Bt + Ct^{2} = (AC - B^{2})/C + (B + Ct)^{2}/C$$

Since this is positive for all t, we note that $AC - B^2/C \ge 0$. Now, for t large, the second term dominates, so C > 0 as well. It follows that $AC - B^2 \ge 0$.

3. Use the above two steps to conclude that $E(XY)^2 \leq E(X^2)E(Y^2)$.

Solution: Combining these two results above we see easily that $E(X^2)E(Y^2) \ge E(XY)^2$.

4. Check that E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y). (Hint: Expand!)

Solution:

$$E((X-a)(Y-b)) = E(XY - aY - bX + ab) = E(XY) - aE(Y) - bE(X) + ab$$

Now putting $a = E(X)$ and $b = E(Y)$, we get
$$E((X - E(X))(Y - E(Y))) =$$
$$E(XY) - E(X)E(Y) - E(Y)E(X) + E(X)E(Y) =$$
$$E(XY) - E(X)E(Y)$$

5. Let us define c(X, Y) = E(XY) - E(X)E(Y). Show that $c(X, Y)^2 \le \sigma^2(X)\sigma^2(Y)$. (Hint: Apply steps 1-3 to X - E(X) and Y - E(Y).)

Solution:

$$E((X - E(X))^2)E((Y - E(Y))^2) \ge E((X - E(X)(Y - E(Y)))^2)$$

This is just a restatement of

$$\sigma^2(X)\sigma^2(Y) \ge c(X,Y)^2$$

6. Show that c(X, Y) = 0 if X and Y are independent.

Solution: We have seen already that if X and Y are independent then E(XY) = E(X)E(Y). Thus c(X,Y) = 0. Note that c(X,Y) = 0, then it need not be the case that X and Y are independent!

The number c(X, Y) is called the covariance of X and Y. Assuming that $\sigma^2(X)\sigma^2(Y)$ is non-zero, the ratio $\rho(X, Y) = c(X, Y)/\sigma(X)\sigma(Y)$ is called the correlation of X and Y. It lies between -1 and 1.

- 3. Suppose that X and Y are independent random variables.
 - 1. Show that aX and bY are independent random variables for any non-zero constants a and b.

Solution: (We assume that the variables are discrete. The continuous case is similar.)

$$P((aX = r) \land (bY = s)) = P((X = r/a) \land (Y = s/b)) = P(X = r/a) \cdot P(Y = s/b) = P(aX = r) \cdot P(bY = s)$$

Thus, these are independent.

2. Let U = X + Y and V = 2X - 3Y. Calculate E(U), $\sigma^2(U)$, E(V) and $\sigma^2(V)$ in terms of E(X), $\sigma^2(X)$, E(Y) and $\sigma^2(Y)$.

Solution: By linearity of expectation

$$E(U) = E(X) + E(Y)$$
 and $E(V) = 2E(X) - 3E(Y)$

Since aX and bY are independent, we have

$$\sigma^2(U) = \sigma^2(X) + \sigma^2(Y) \text{and} \sigma^2(V) = 4\sigma^2(X) + 9\sigma^2(Y)$$

3. Let W = 3X - 2Y = U + V. Calculate E(W) and $\sigma^2(W)$ in terms of E(X), E(Y), $\sigma^2(X)$ and $\sigma^2(Y)$.

Solution: As above we have

$$E(W) = 3E(X) - 2E(Y) \text{and} \sigma^2(W) = 9\sigma^2(X) + 4\sigma^2(Y)$$

4. Check whether U and V are independent.

Solution: Let us compare $\sigma^2(W) = \sigma^2(U+V)$ with $\sigma^2(U) + \sigma^2(V)$. The first one is $9\sigma^2(X) + 4\sigma^2(Y)$ and the second one is $5\sigma^2(X) + 10\sigma^2(Y)$. For most values of $\sigma^2(X)$ and $\sigma^2(Y)$ these numbers are different! Hence U and V are (in general) not independent.

This exercise shows that independence is quite a different notion from what one might think since X and Y (which are independent) can be written linearly in terms of U and V which are not independent!

4. Given any two positive numbers a and b such that b < a and $a^2 = k(a - b)$ for some positive integer k. Show that there is a random variable X such that E(X) = a and $\sigma^2(X) = b$. (Hint: Consider a suitable Binomial random variable.)

Solution: Assume that p = 1 - b/a and consider the Binomial random variable X that counts the number of successes in k Bernoulli trials with probability p of success. Then E(X) = k(1 - b/a) = k(a - b)/a = a and $\sigma^2(X) = k(b/a)(1 - b/a) = b$.

5. Given any two positive numbers a and b such that a < b and $a^2 = k(b-a)$ for some positive integer k. Show that there is a random variable X such that E(X) = a and $\sigma^2(X) = b$. (Hint: Consider a suitable Negative Binomial random variable.)

Solution: Assume that p = 1 - a/b and consider the negative Binomial random variable X that counts the number of successes before finding k failures in a sequence of independent Bernoulli trials with probability p of success. Then E(X) = k(1 - a/b)/(a/b) = k(b-a)/a = a and $\sigma^2(X) = k(1 - a/b)/(a/b)^2 = k(b-a)b/a^2 = b$

Note that, in fact, given any real number a and any positive number b, we can define a random variable with E(X) = a and $\sigma^2(X) = b$. (The sign of a does not matter since E(-X) = -a. The tricky part is getting the case |a| = b!)

6. Suppose we flip a fair coin 100 times. Using Chebychev's inequality, estimate the probability that we see between 40 and 60 heads.

Solution: Let X be the random variable that counts the number of heads. Then E(X) = 100/2 = 50 and $\sigma^2(X) = 100/4 = 25$. Chebychev's inequality in this case becomes

$$P(|X - 50| > 10) \le 25/10^2 = 1/4$$

So the probability that we have between 40 and 50 heads is 1 - 1/4 = 3/4 by this inequality.

Note that this is actually a very weak result. If you calculate it directly in terms of the Binomial distribution you get a number like 0.965!