Solutions to Assignment 13

1. Given a complex inner product space V and a linear transformation $A: V \rightarrow V$. Suppose B is a set-theoretic map such that $\langle A v, w\rangle=\langle v, B w\rangle$ for all v, w in V. Is it true that B is a linear map?

Solution: We check that for all v, w in V and for all complex numbers a, we have

$$
\langle v, B a w\rangle=
$$

$$
\langle A v, a w\rangle=\bar{a}\langle A v, w\rangle=\bar{a}\langle v, B w\rangle=
$$

Since this is true for all v in V. It follows that $B a w=a B w$. (For example, we could take $v=B a w-a B w$ and then we would get $\langle v, v\rangle=0$.) Similarly, for all u, v and w in V, we have

$$
\begin{array}{cc}
\langle v, B(u+w)\rangle= & \\
\langle A v, u+w\rangle=\langle A v, u\rangle+\langle A v, w\rangle= \\
\langle v, B u\rangle+\langle v, B w\rangle= & \langle v, B u+B w\rangle
\end{array}
$$

As above, this means that $B(u+w)=B u+B w$. It follows that B is linear.
2. Consider the linear transformation $A: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ given by interchanging the two coordinates. Is it unitary? Is it self-adjoint? What is the matrix M of this linear transformation in the bases $e_{1}=(1,0), e_{2}=(1,1)$. Is M a unitary or Hermitian matrix? Why not?

Solution: We have

$$
\left\langle A\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right)\right\rangle=z_{2} \overline{w_{1}}+z_{1} \overline{w_{2}}=\left\langle\left(z_{1}, z_{2}\right), A\left(w_{1}, w_{2}\right)\right\rangle
$$

Similarly,

$$
\left\langle A\left(z_{1}, z_{2}\right), A\left(w_{1}, w_{2}\right)\right\rangle=z_{2} \overline{w_{2}}+z_{1} \overline{w_{1}}=\left\langle\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right)\right\rangle
$$

So A is unitary and self-adjoint. We also note that the matrix A is

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

This is neither Hermitian or unitary. This is because the basis $\left\{e_{1}, e_{2}\right\}$ is not orthogonal.
3. Write down the linear transformation that is an orthogonal projection to the subspace generated by $(1,-1,0)$ and $(1,0,-1)$.

Solution: The direct approach is to form the orthogonal basis out of the given vectors $v_{1}=(1,-1,0)$ and $v_{2}=(1,0,-1)$. We put $w_{1}=v_{1}$ and

$$
w_{2}=v_{2}-\frac{1}{2} v_{1}=\frac{1}{2}(1,1,-2)
$$

The projection map is then given by

$$
P w=\frac{\left\langle w, w_{1}\right\rangle}{2} w_{1}+2 \frac{\left\langle w, w_{2}\right\rangle}{3} w_{2}
$$

where we have used $\left\langle w_{1}, w_{1}\right\rangle=2$ and $\left\langle w_{2}, w_{2}\right\rangle=3 / 2$. We note that, in this particular case the vector $w_{3}=(1,1,1)$ is perpendicular to v_{1} and v_{2}, so the projection could also be given by

$$
P w=w-\frac{\left\langle w, w_{3}\right\rangle}{3} w_{3}
$$

where we have used $\left\langle w_{3}, w_{3}\right\rangle=3$.
4. Classify the following matrices as unitary, Hermitian, idempotent, orthogonal idempotent, normal or none of these.
(a)

$$
\left(\begin{array}{cc}
0 & \iota \\
-\iota & 0
\end{array}\right)
$$

Solution: Hermitian and unitary. An invertible idempotent is identity which it is not. A unitary or a Hermitian matrix is normal, so it is normal.
(b)

$$
\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

Solution: Hermitian and idempotent, hence it is orthogonal idempotent. Since rank is 1 , it is not unitary. Since it is Hermitian, it is normal.
(c)

$$
\left(\begin{array}{cc}
1 & \iota \\
-\iota & 1
\end{array}\right)
$$

Solution: It is Hermitian. It is not unitary since norm of 1st column is 2. It is of rank 2 and not identity so it is not idempotent. It is normal since it is Hermitian.
(d)

$$
\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)
$$

Solution: It is unitary but not hermitian. It is of rank 2 and not identity, hence it is not idempotent. It is normal since it is unitary.
(e)

$$
\left(\begin{array}{cc}
\iota \cos t & \iota \sin t \\
-\iota \sin t & \iota \cos t
\end{array}\right)
$$

Solution: Since it is ι multiple of unitary, it is unitary. Since diagonal entries are not real, it is not Hermitian. Since it is of rank 2 and not identity it is not idempotent. It is normal since it is unitary.
(f)

$$
\left(\begin{array}{cc}
\iota & 0 \\
0 & -\iota
\end{array}\right)
$$

Solution: It is unitary since diagonal entries are of absolute value 1. Since diagonal entries are not real, it is not Hermitian. Since it is of rank 2 and not identity it is not idempotent. It is normal since it is unitary.
5. Consider the 2×2 invertible matrix

$$
G=\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right)
$$

Write the KAN, KP and KAK decompositions for this matrix. Are the resulting matrices real or complex?

Solution: We calculate

$$
\binom{3}{5}-\frac{6+15}{4+9}\binom{2}{3}=\binom{-3 / 13}{2 / 13}
$$

$$
\text { so } G \cdot\left(\begin{array}{cc}
1 & -21 / 13 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & -3 / 13 \\
3 & 2 / 13
\end{array}\right)
$$

We note that $\|(2,3)\|^{2}=13$ so

$$
G \cdot\left(\begin{array}{cc}
1 & -21 / 13 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{13} & 0 \\
0 & \sqrt{13}
\end{array}\right)=\left(\begin{array}{cc}
2 / \sqrt{13} & -3 / \sqrt{13} \\
3 / \sqrt{13} & 2 / \sqrt{13}
\end{array}\right)
$$

The latter is an orthogonal matrix. Thus we have the KAN decomposition

$$
G=\left(\begin{array}{cc}
2 / \sqrt{13} & -3 / \sqrt{13} \\
3 / \sqrt{13} & 2 / \sqrt{13}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{13} & 0 \\
0 & 1 / \sqrt{13}
\end{array}\right)\left(\begin{array}{cc}
1 & 21 / 13 \\
0 & 1
\end{array}\right)
$$

Next, we note that G is itself symmetric and positive definite ($2>0$ and determinant positive). Hence, G is the square-root of $G^{2}=G^{t} G$. In other words, the $K P$ decomposition of G is $1 \cdot G$!
To find the KAK decomposition, we look for an orthonormal basis of eigenvectors for G. The characteristic polynomial is $T^{2}-7 T+1$, which has roots $(7 \pm 3 \sqrt{5}) / 2$. Putting $\phi=(1+\sqrt{5}) / 2$, this is $2+3 \phi$ and $5-3 \phi$ (note that both the numbers are positive). We see that

$$
\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right)\binom{1}{\phi}=\binom{2+3 \phi}{3+5 \phi}
$$

Note that $\phi^{2}=1+\phi$, so

$$
\phi(2+3 \phi)=2 \phi+3(1+\phi)=3+5 \phi
$$

So $(1, \phi)$ is an eigenvector. Since the matrix is symmetric $(-\phi, 1)$ is another eigenvector. It follows that

$$
\left(\begin{array}{cc}
2 & 3 \\
3 & 5
\end{array}\right)\left(\begin{array}{cc}
1 & -\phi \\
\phi & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & -\phi \\
\phi & 1
\end{array}\right)\left(\begin{array}{cc}
2+3 \phi & 0 \\
0 & 5-3 \phi
\end{array}\right)
$$

We then get

$$
\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right)=\frac{1}{\sqrt{2+\phi}}\left(\begin{array}{cc}
1 & -\phi \\
\phi & 1
\end{array}\right)\left(\begin{array}{cc}
2+3 \phi & 0 \\
0 & 5-3 \phi
\end{array}\right) \frac{1}{\sqrt{2+\phi}}\left(\begin{array}{cc}
1 & \phi \\
-\phi & 1
\end{array}\right)
$$

As the KAK decomposition
6. (Starred) Will it always be true that for real matrices the KAN, KP and KAK decompositions will give real matrices?

Solution: Given that G is a real matrix, $G^{t} G$ is also a real positive definite symmetric matrix. Hence, it can be diagonalised by an real orthogonal matrix V, so that $V G^{t} G V^{t}=B$ is a diagonal matrix with positive entries on the diagonal. We then take A to be the natural diagonal sqaure root of B with positive diagonal entries; it is also real. Hence, $U=G V^{t} A^{-1}$ is also a real matrix and we check that it is orthogonal. Thus, the KAK decomposition of G is $U A V$ which consists of real matrices. We note that $K=U V$ is orthogonal and $P=V^{t} A V$ is positive definite; both these matrices are real. Moreover, $G=K P$ is the KP decomposition of G.
Note: In the process of the above argument we showed that if $U A V$ is a KAK decomposition of a matrix G, then $(U V)\left(V^{t} A V\right)$ is the KP decomposition of the same matrix G !

The Gram-Schmidt process for G does not involve an operations with complex numbers, hence the KAN decomposition also consists of real matrices.
7. Check that the following matrix is normal.

$$
G=\left(\begin{array}{cc}
1 & -\iota \\
-\iota & 1
\end{array}\right)
$$

Find the spectral decomposition of this matrix. (Equivalently, find an orthonormal basis of eigenvectors.)

Solution: We note that $(1,-\iota)$ and $(-\iota, 1)$ are unitarily orthogonal to each other since $-\bar{\iota}-\iota=0$! Moreover, the norm of each vector is $\sqrt{2}$. Thus

$$
G=\left(\begin{array}{cc}
1 / \sqrt{2} & -\iota / \sqrt{2} \\
-\iota / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right)
$$

is the KP decomposition of the matrix. We note that the second matrix is a scalar matrix and hence every vector is an eigen vector for it!
It is clear that $(1,1)$ is an eigen vector for G and so is $(1,-1)$ with eigen values $1+i$ and $1-i$ respectively. Hence, we have

$$
\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) G\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)=\left(\begin{array}{cc}
(1-i) & 0 \\
0 & (1+i)
\end{array}\right)
$$

Here the matrix

$$
\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

is a orthogonal (and hence unitary) matrix. Thus we have found an orthogonal basis of eigen vectors. This also shows that G is normal.

We now do the proof in the more mundane algorithmic way!
We note that

$$
G^{*}=\bar{G}^{t}=\left(\begin{array}{ll}
1 & \iota \\
\iota & 1
\end{array}\right)
$$

Hence,

$$
G^{*} G=\left(\begin{array}{ll}
1 & \iota \\
\iota & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\iota \\
-\iota & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

Similarly,

$$
G G^{*}=\left(\begin{array}{ll}
1 & \iota \\
\iota & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\iota \\
-\iota & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

Now, the P component of the KP decomposition is $\sqrt{G^{*} G}$ which, in this case, is

$$
P=\left(\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right)
$$

Hence, the K component is

$$
K=G P^{-1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & \iota \\
\iota & 1
\end{array}\right)
$$

This gives the KP decomposition and we then find the orthogonal basis of eigenvectors as before.

