Solutions to Quiz 6

1. For the quaternion $q=1+2 \hat{i}-2 \hat{j}$ carry out the following:
(a) Calculate the norm of q.

Solution: The norm of q is $1+2^{2}+2^{2}=9$.
(b) Calculate the 3×3 matrix B of the linear transformation $(0, w) \mapsto q \odot(0, w) \odot q^{-1}$.

Solution: We have

$$
\begin{aligned}
& \hat{i} \mapsto(1 / 9)(1+2 \hat{i}-2 \hat{j}) \hat{i}(1-2 \hat{i}+2 \hat{j}) \\
& \hat{j} \mapsto(1 / 9)(1+2 \hat{i}-2 \hat{j}) \hat{j}(1-2 \hat{i}+2 \hat{j}) \\
& \hat{k} \mapsto(1 / 9)(1+2 \hat{i}-2 \hat{j}) \hat{k}(1-2 \hat{i}+2 \hat{j})
\end{aligned}
$$

This gives

$$
\begin{aligned}
& \hat{i} \mapsto(1 / 9)(\hat{i}-8 \hat{j}+4 \hat{k}) \\
& \hat{j} \mapsto(1 / 9)(\hat{j}-8 \hat{i}+4 \hat{k}) \\
& \hat{k} \mapsto(1 / 9)(-4 \hat{j}-4 \hat{i}-7 \hat{k})
\end{aligned}
$$

Thus the matrix is

$$
B=\left(\begin{array}{ccc}
1 / 9 & -8 / 9 & -4 / 9 \\
-8 / 9 & 1 / 9 & -4 / 9 \\
4 / 9 & 4 / 9 & -7 / 9
\end{array}\right)
$$

(c) Is B an orthogonal matrix?

Solution: We know that for any non-zero quaternion $O(q):(0, w) \mapsto q \odot$ $(0, w) \odot q^{-1}$ is an orthogonal matrix. In particular, B is an orthogonal matrix.
(d) What is a vector fixed by B ?

Solution: We see that $(1,-1,0)$ is fixed by B.

