Solutions to Assignment 12

1. Write the norms, conjugates and inverses of the following complex numbers and quaternions.
(a) $5+12 \iota$

Solution: The conjugate of $5+12 \iota$ is $5-12 \iota$ and the norm is

$$
(5+12 \iota)(5-12 \iota)=5^{2}+12^{2}=13^{2}
$$

It follows that $(5-12 \iota) / 13^{2}$ is the inverse of $5+12 \iota$.
(b) $\sin t+\cos t \iota$.

Solution: The conjugate of $\sin t+\cos t \iota$ is $\sin t-\cos t \iota$, hence its norm is

$$
(\sin t+\cos t \iota)(\sin t-\cos t \iota)=\sin ^{2} t+\cos ^{2} t=1
$$

Hence, its conjugate is also its inverse.
(c) $\cos s \cos t+\sin s \sin t \hat{i}+\sin s \cos t \hat{k}+\cos s \sin t \hat{k}$

Solution: The conjugate of the given quaternion is $\cos s \cos t-\sin s \sin t \hat{i}-$ $\sin s \cos t \hat{k}-\cos s \sin t \hat{k}$. Hence its norm is given by

$$
\cos ^{2} s \cos ^{2} t+\sin ^{2} s \sin ^{2} t+\sin ^{2} s \cos ^{2} t+\cos ^{2} s \sin ^{2} t=1
$$

Hence, its conjugate is also its inverse.
(d) $1+\hat{i}+\hat{j}+\hat{k}$.

Solution: The conjugate of the given quaternion is $1-\hat{i}-\hat{j}-\hat{k}$. It follows that its norm is $1+1+1+1=4$. Hence its inverse is $(1-\hat{i}-\hat{j}-\hat{k}) / 4$.
2. What are all the quaternions q so that $\hat{i} q \hat{i}=-q$.

Solution: We note that $\hat{i} 1 \hat{i}=-1$ and $\hat{i} \hat{i} \hat{i}=-\hat{i}$ since $\hat{i}^{2}=-1$. On the other hand $\hat{i} \hat{j}=-\hat{j} \hat{i}$ so that $\hat{i} \hat{j} \hat{i}=\hat{j}$ and similarly for \hat{k}. It follows that a quaternion satisfies the above property if and only if q is of the form $a+b \hat{i}$.
3. Given a quaternion (a, v) characterise all quaternions q so that $q \odot(a, v)=(a, v) \odot q$.

Solution: We note that $(a, v)=(a, 0)+(0, v)$ and $(a, 0)$ commutes with all quaternions. Thus it is enough to find out what quaternions satisfy $q \odot(0, v)=(0, v) \odot q$. We may assume that $v \neq 0$ and hence, by scaling v, we can assume that v is a unit vector. Since the quaternion operations are invariant under an orthogonal change of bases, we can assume that v is the unit vector \hat{i}. As seen above, a quaternion commutes with \hat{i} if and only if it is of the form $b+c \hat{i}$. It follows that if $v \neq 0$ then the only quaternions that commute with (a, v) are those of the form $(b, c v)$ for real numbers b and c.
4. For a fixed unit vector v define the map $w \mapsto v \times(w \times v)$ from 3 -space to itself. Describe this map in words. Show that your description is correct by calculation.

Solution: We note when w is not linearly dependent on v, the vector $w \times v$ is perpendicular to w and v. Hence the vector $v \times(w \times v)$ is along the component $w_{1}=w-\frac{w^{t} v}{v^{t} v} v$ of w which is perpendicular to v. Hence, we obtain a map $v \mapsto$ $v \times(w \times v)=q(v) w_{1}$ for some function q on 3 -space. Moreover, we easily see that q is a quadratic form. For v such that $v^{t} v=1$ we check easily that $q(v)=1$. It follows that $q(v)=v^{t} v$. Thus, we see that, for w linearly independent of v, we have

$$
v \times(w \times v)=\left(v^{t} v\right)\left(w-\frac{w^{t} v}{v^{t} v} v\right)
$$

We see that this is true for $v=w$ in which case both sides are 0 . Hence,

$$
v \times(w \times v)=\left(v^{t} v\right) w-\left(w^{t} v\right) v
$$

5. Show that $O(a, v)$ (conjugation by (a, v) on the quaternions of the form $(0, w)$) is a rotation in the plane perpendicular to v by an angle that is determined by a and (v, v).

Solution: First of all, we note that conjugation preserves the norm of $(0, w)$. Hence $O(a, v)$ is orthogonal.

To simplify, we first calculate

$$
\left(a^{2}+v^{t} v\right) O(a, v) w=(a, v) \odot(0, w) \odot(a,-v)
$$

We start with

$$
(0, w) \odot(a,-v)=\left(v^{t} w, a w-w \times v\right)
$$

Hence

$$
\begin{aligned}
& (a, v) \odot(0, w) \odot(a,-v)= \\
& \quad\left(a v^{t} w-v^{t}(a w-w \times v), a(a w-w \times v)+\left(v^{t} w\right) v+v \times(a w-w \times v)\right)
\end{aligned}
$$

The right hand simplifies (using $v^{t}(w \times v)=0$ (since the cross-product is perpendicular to each vector and $w \times v=-v \times w)$ to

$$
\left(0, a^{2} w+2 a v \times w+\left(v^{t} w\right) v-v \times(w \times v)\right)
$$

We can now use the previous exercise to further simplify this to get

$$
O(a, v) w=\frac{a^{2} w+2 a v \times w+2\left(v^{t} w\right) v-\left(v^{t} v\right) w}{a^{2}+v^{t} v}
$$

Note that $O(a, v)=1$ for $v=0$. So we can assume that $v \neq 0$. Applying the above to v we get

$$
O(a, v) v=\frac{a^{2} v+\left(v^{t} v\right) v}{a^{2}+v^{t} v}=v
$$

Hence, v is fixed by $O(a, v)$.
We have already noted that $O(a, v)$ is orthogonal. Hence, we only need to compute its action on vectors perpendicular to v.
Now suppose that w is a unit vector perpendicular to v. Then $v \times w$ is perpendicular to v and to w; further $(v \times w)^{t}(v \times w)=v^{t} v$. We thus see that

$$
O(a, v) w=\frac{a^{2} w+2 a v \times w-\left(v^{t} v\right) w}{a^{2}+v^{t} v}=c w+d \frac{v \times w}{\|v\|}
$$

where

$$
\begin{aligned}
& c=\frac{a^{2}-v^{t} v}{a^{2}+v^{t} v} \\
& d=\frac{2 a\|v\|}{a^{2}+v^{t} v}
\end{aligned}
$$

We see that $c^{2}+d^{2}=1$. In fact, if we put

$$
\begin{aligned}
c_{1} & =\frac{a}{\sqrt{a^{2}+v^{t} v}} \\
d_{1} & =\frac{\|v\|}{\sqrt{a^{2}+v^{t} v}}
\end{aligned}
$$

Then $c_{1}^{2}+d_{1}^{2}=1$ and, we have $c=c_{1}^{2}-d_{1}^{2}$ and $d=2 c_{1} d_{1}$. This shows that if we take t so that $(\cos t, \sin t)=\left(c_{1}, d_{1}\right)$, then $O(a, v)$ rotates w by $2 t$.
6. Show that $(a, v) \mapsto O(a, v)$ gives a group homomorphism from S^{3} to the group $S O(3)$ of 3 dimensional rotations.

Solution: We have seen above that $O(a, v)$ is a rotation hence it is of determinant 1. We easily check that

$$
\begin{array}{ll}
\left(0, O\left(q_{1} \odot q_{2}\right) w\right)= & \\
& \left(q_{1} \odot q_{2}\right) \odot(0, w) \odot\left(q_{1} \odot q_{2}\right)^{-1}= \\
& q_{1} \odot\left(q_{2} \odot(0, w) \odot q_{2}^{-1}\right) \odot q_{1}^{-1}=
\end{array}
$$

$$
\left(0, O\left(q_{1}\right) O\left(q_{2}\right) w\right)
$$

7. Show that this homomorphism is onto and has kernel $\{ \pm 1\}$.

Solution: By the formula given in the previous exercise, we see that if $q=(\cos t, \sin t v)$ then $O(q)$ is rotation by $2 t$ in the plane perpendicular to v. It follows that the map is onto as we vary v. Moreover, $O(q)$ is identity if and only if $2 t=2 \pi$ or $2 t=0$. In the first case we have $q=(-1,0)$ and in the second case we have $q=(1,0)$.

