Solutions to Assignment 11

1. What are some values of b and c that will make the following an orthogonal matrix?

$$
G=\left(\begin{array}{cc}
3 / 5 & b \\
c & 3 / 5
\end{array}\right)
$$

Solution: The condition that the columns form an orthonormal basis translates into the equations

$$
(3 / 5)^{2}+c^{2}=1=b^{2}+(3 / 5)^{2} \text { and }(3 / 5) b+c(3 / 5)=0
$$

This gives us $b^{2}=c^{2}=16 / 25$ and $b=-c$. One solution is $b=4 / 5$ and $c=-4 / 5$.
2. For the above matrix (after substituting b and c) calculate the matrix $H=(G-1)(G+$ $1)^{-1}$. Check that it is skew-symmetric.

Solution: We calculate

$$
G+1=\left(\begin{array}{cc}
8 / 5 & 4 / 5 \\
-4 / 5 & 8 / 5
\end{array}\right)
$$

Hence, its inverse is

$$
(G+1)^{-1}=\frac{5}{16}\left(\begin{array}{cc}
8 / 5 & -4 / 5 \\
4 / 5 & 8 / 5
\end{array}\right)
$$

So we get

$$
H=(G-1)(G+1)^{-1}=\frac{5}{16}\left(\begin{array}{cc}
-2 / 5 & 4 / 5 \\
-4 / 5 & -2 / 5
\end{array}\right)\left(\begin{array}{cc}
8 / 5 & -4 / 5 \\
4 / 5 & 8 / 5
\end{array}\right)
$$

We calculate this to be

$$
H=\left(\begin{array}{cc}
0 & 1 / 2 \\
-1 / 2 & 0
\end{array}\right)
$$

Which is skew symmetric.
3. Let $v=e_{1}+e_{2}+e_{3}$ be the column 3 -vector all of whose entries are 1 . Write down the matrix of the associated reflection R_{v} defined as the linear transformation

$$
R_{v}(w)=w-2 \frac{w^{t} v}{v^{t} v} v
$$

Solution: We calculate $v^{t} v=3$ and $e_{i}^{t} v=1$ for all i. Hence,

$$
R_{v}\left(e_{i}\right)=e_{i}-(2 / 3) v
$$

Hence, the matrix of the linear transformation is

$$
\left(\begin{array}{ccc}
1 / 3 & -2 / 3 & -2 / 3 \\
-2 / 3 & 1 / 3 & -2 / 3 \\
-2 / 3 & -2 / 3 & 1 / 3
\end{array}\right)
$$

4. More generally, if v is any column vector, then show that the matrix for R_{v} is given by

$$
R_{v}=1-\frac{2}{v \cdot v} v v^{t}
$$

(Note that $v v^{t}$ is a 3×3 matrix!)

Solution: We note that $v v^{t} w=\left(v^{t} w\right) v$ since $v^{t} w$ is just a scalar. Moreover, $v^{t} w=$ $w^{t} v$. It follows that

$$
\left(1-\frac{2}{v^{t} v} v v^{t}\right) w=w-2 \frac{w^{t} v}{v^{t} v} v
$$

as required.
5. Using the above formula, write $A=R_{v} R_{u}$ in a form where it is "obvious" that A is identity on the vectors perpendicular to both u and v. Calculate the 2×2 matrix for A on the plane spanned by u and v (assume that u and v are linearly independent). Is it an orthogonal matrix? If not, why not?

Solution: Using the above formula we have

$$
A=1-\frac{2}{v^{t} v} v v^{t}-\frac{2}{u^{t} u} u u^{t}+4 \frac{v^{t} u}{\left(v^{t} v\right)\left(u^{t} u\right)} v u^{t}
$$

If w is perpendicular to both v and u then $v^{t} w=u^{t} w=0$ and so it is obvious that $A w=w$. We can thus restrict our attention to the space spanned by v and u. We have

$$
A v=v-2 v-2 \frac{u^{t} v}{u^{t} u} u+4 \frac{\left(v^{t} u\right)^{2}}{\left(v^{t} v\right)\left(u^{t} u\right)} v=\left(-1+4 \frac{\left(v^{t} u\right)^{2}}{\left(v^{t} v\right)\left(u^{t} u\right)}\right) v-2 \frac{v^{t} u}{u^{t} u} u
$$

similarly,

$$
A u=u-2 \frac{v^{t} u}{v^{t} v} v-2 u+4 \frac{v^{t} u}{\left(v^{t} v\right)} v=2 \frac{v^{t} u}{v^{t} v} v-u
$$

This gives us the matrix of A restricted to the space spanned by u and v in terms of the basis u and v as

$$
\left(\begin{array}{cc}
\left(-1+4 \frac{\left(v^{t} u\right)^{2}}{\left(t^{t} v\right)\left(u^{t} u\right)}\right) & 2 \frac{v^{t} u}{u^{t} u} \\
2 \frac{v^{t} u}{v^{t} v} & -1
\end{array}\right)
$$

We see that this has determinant 1. However, it is not orthogonal unless $v^{t} u=0$, in which case it is the matrix of multiplication by -1 . (In other words, if v and u are perpendicular to each other, then it is a rotation by π radians.) In the other cases this does represent a rotation but in a non-orthogonal basis u and v; this is why it is not an orthogonal matrix.
6. For the quaternion $q=(1,(1,1,1)) / 2$ carry out the following:
(a) Check that the norm of q is 1 .

Solution: We see that $\operatorname{Nm}(1,(1,1,1))=1+3=4=2^{2}$. Hence $\operatorname{Nm}(q)=1$.
(b) Write down the 4×4 matrix A of the linear transformation $(b, w) \mapsto q \odot(b, w)$.

Solution: We have $(1,0) \mapsto q \odot(1,0)=q$ and

$$
\left(0, e_{i}\right) \mapsto q \odot\left(0, e_{i}\right)=(1 / 2)\left(-1, e_{i}+(1,1,1) \times e_{i}\right)
$$

Now we have

$$
\begin{aligned}
& \left(e_{1}+e_{2}+e_{3}\right) \times e_{1}=e_{2}-e_{3} \\
& \left(e_{1}+e_{2}+e_{3}\right) \times e_{2}=e_{3}-e_{1} \\
& \left(e_{1}+e_{2}+e_{3}\right) \times e_{3}=e_{1}-e_{2}
\end{aligned}
$$

Hence, the matrix is

$$
A=\left(\begin{array}{cccc}
1 / 2 & -1 / 2 & -1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2 & 1 / 2
\end{array}\right)
$$

(c) Write down the 3×3 matrix B of the linear transformation $(0, w) \mapsto q \odot(0, w) \odot \bar{q}$.

Solution: We have already calculated that

$$
\begin{aligned}
& q \odot\left(0, e_{1}\right)=\left(-1, e_{1}+e_{2}-e_{3}\right) / 2 \\
& q \odot\left(0, e_{2}\right)=\left(-1, e_{2}+e_{3}-e_{1}\right) / 2 \\
& q \odot\left(0, e_{3}\right)=\left(-1, e_{3}+e_{1}-e_{2}\right) / 2
\end{aligned}
$$

Now $\overline{q \odot v}=\bar{v} \odot \bar{q}$ and $\overline{e_{i}}=-e_{i}$. So we get

$$
\begin{aligned}
& q \odot\left(0, e_{1}\right) \odot \bar{q}=(1 / 2)\left(-\bar{q}-\overline{q \odot e_{1}}-\overline{q \odot e_{2}}+\overline{q \odot e_{3}}\right) \\
& q \odot\left(0, e_{2}\right) \odot \bar{q}=(1 / 2)\left(-\bar{q}+\overline{q \odot e_{1}}-\overline{q \odot e_{2}}-\overline{q \odot e_{3}}\right) \\
& q \odot\left(0, e_{3}\right) \odot \bar{q}=(1 / 2)\left(-\bar{q}-\overline{q \odot e_{1}}+\overline{q \odot e_{2}}-\overline{q \odot e_{3}}\right)
\end{aligned}
$$

Substituting once more and taking conjugates, we get

$$
\begin{aligned}
& q \odot\left(0, e_{1}\right) \odot \bar{q}=\left(0, e_{2}\right) \\
& q \odot\left(0, e_{2}\right) \odot \bar{q}=\left(0, e_{3}\right) \\
& q \odot\left(0, e_{3}\right) \odot \bar{q}=\left(0, e_{1}\right)
\end{aligned}
$$

This gives the matrix

$$
B=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

(d) Are A and B orthogonal matrices?

Solution: Both A and B are orthogonal matrices. This is because $\operatorname{Nm}(a, v)$ is the natural inner-product on 4 dimensional space and the above multiplications preserve the norm (since $\operatorname{Nm}(q)=1)$.
(e) Describe the matrix B as a rotation. What is the angle in terms of sine and cosine?

Solution: This is a rotation by $2 \pi / 3$ in the plane perpendicular to the vector $(1,1,1)$.
(f) Can you describe the matrix A as a rotation (is there any fixed "axis")?

Solution: If $q \odot(b, w)=(b, w)$ for some non-zero (b, w), then we can multiply on the right by the inverse of (b, w) to get $q=1$. Thus, no vector can be fixed
by mutliplication by a quaternion q, unless the quaternion is 1 .
(g) What is the canonical form of B over complex numbers?

Solution: Since B is a rotation by $2 \pi / 3$ in a suitable plane, the canonical form is

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{2 \pi \sqrt{-1} / 3} & 0 \\
0 & 0 & e^{-2 \pi \sqrt{-1} / 3}
\end{array}\right)
$$

7. Fix a 3 -vector v. Write the matrix for the linear transformation $w \mapsto v \times w$.

Solution: We let the coordinates of v to be x, y and z. Then we get

$$
\begin{aligned}
& e_{1} \mapsto-y e_{3}+z e_{2} \\
& e_{2} \mapsto x e_{3}-z e_{1} \\
& e_{3} \mapsto-x e_{2}+y e_{1}
\end{aligned}
$$

Hence the matrix is

$$
\left(\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right)
$$

In particular, note that it is a skew-symmetric matrix and that every skew-symmetric matrix is also obtained this way!
8. Repeat the above calculations for a general unit quaternion $q=(a, v)$ with $a^{2}+v \cdot v=1$.

Solution: By calculations similar to the one above, we see that the matrix associated with $(b, w) \mapsto q \odot(b, w)$, where $q=(a, v)$ and $v=(x, y, z)$ (assuming $a^{2}+x^{2}+y^{2}+z^{2}=$ $1)$ is given by

$$
A(q)=\left(\begin{array}{cccc}
a & -x & -y & -z \\
x & a & -z & y \\
y & z & a & -x \\
z & -y & x & a
\end{array}\right)
$$

As above, to calculate the matrix of

$$
(0, w) \mapsto q \odot(0, w) \odot \bar{q}
$$

we observe that $(c, u) \bar{q}=\overline{q \odot(c,-u)}$. Now, the conjugate of a quaternion, written as a column vector is given by multiplication by the matrix

$$
C=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

So we need to calculate $C \cdot A(q) \cdot C \cdot A(q)$ in other words

$$
C \cdot\left(\begin{array}{cccc}
a & -x & -y & -z \\
x & a & -z & y \\
y & z & a & -x \\
z & -y & x & a
\end{array}\right)\left(\begin{array}{cccc}
a & -x & -y & -z \\
-x & -a & z & -y \\
-y & -z & -a & x \\
-z & y & -x & -a
\end{array}\right)
$$

We get

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a^{2}+x^{2}-z^{2}-y^{2} & 2(x y-a z) & 2(x z+a y) \\
0 & 2(x y+a z) & a^{2}+y^{2}-z^{2}-x^{2} & 2(y z-a x) \\
0 & 2(x z-a y) & 2(y z+a x) & a^{2}+z^{2}-y^{2}-x^{2}
\end{array}\right)
$$

So the 3×3 matrix is

$$
\left(\begin{array}{ccc}
a^{2}+x^{2}-z^{2}-y^{2} & 2(x y-a z) & 2(x z+a y) \\
2(x y+a z) & a^{2}+y^{2}-z^{2}-x^{2} & 2(y z-a x) \\
2(x z-a y) & 2(y z+a x) & a^{2}+z^{2}-y^{2}-x^{2}
\end{array}\right)
$$

We check that

$$
\left(\begin{array}{ccc}
a^{2}+x^{2}-z^{2}-y^{2} & 2(x y-a z) & 2(x z+a y) \\
2(x y+a z) & a^{2}+y^{2}-z^{2}-x^{2} & 2(y z-a x) \\
2(x z-a y) & 2(y z+a x) & a^{2}+z^{2}-y^{2}-x^{2}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

where we used the identity $a^{2}+x^{2}+y^{2}+z^{2}=1$. It follows that this is a rotation in the plane perpendicular to the vector (x, y, z).

