Solutions to Assignment 9

1. Write down the quadratic form associated with the symmetric bilinear form $A(v, w)=$ $v^{t} A w$, where A is the 3×3 matrix

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Solution: We calculate

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x^{2}+2 x y+y^{2}+2 y z
$$

2. Write down the symmetric 3×3 matrix A associated with the quadratic form $Q(x, y, z)$ given by

$$
Q(x, y, z)=x y+y z+z^{2}
$$

Solution: We calculate

$$
Q\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)=\left(x y+x^{\prime} y^{\prime}+x y^{\prime}+x^{\prime} y\right)+\left(y z+y^{\prime} z^{\prime}+y z^{\prime}+y^{\prime} z\right)+\left(z^{2}+z^{\prime 2}+2 z z^{\prime}\right)
$$

Thus $Q\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)-Q(x, y, z)-Q\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is

$$
B\left((x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)=x y^{\prime}+x^{\prime} y+y z^{\prime}+y^{\prime} z+2 z z^{\prime}=\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)
$$

3. Use completion of the square to write each quadratic form below in diagonal form.
(a) $x^{2}+2 x y+2 x z+2 y^{2}+3 y z+3 z^{2}$

Solution: We calculate

$$
x^{2}+2 x y+2 x z=(x+y+z)^{2}-y^{-} 2 y z-z^{2}
$$

Hence,

$$
x^{2}+2 x y+2 x z+2 y^{2}+3 y z+3 z^{2}=(x+y+z)^{2}+y^{2}+y z+2 z^{2}
$$

Now,

$$
y^{2}+y z=(y+z / 2)^{2}-z^{2} / 4
$$

So,

$$
x^{2}+2 x y+2 x z+2 y^{2}+3 y z+3 z^{2}=(x+y+z)^{2}+(y+z / 2)^{2}+(7 / 4) z^{2}
$$

(b) $x^{2}+2 x y+2 x z+y^{2}+y z+2 z^{2}$

Solution: As above we have

$$
x^{2}+2 x y+2 x z+y^{2}+y z+2 z^{2}=(x+y+z)^{2}-y z+z^{2}
$$

Now,

$$
z^{2}-y z=(z-y / 2)^{2}-y^{2} / 4
$$

So,

$$
x^{2}+2 x y+2 x z+y^{2}+y z+2 z^{2}=(x+y+z)^{2}+(z-y / 2)^{2}-y^{2} / 4
$$

4. In each of the examples in the question above write the associated symmetric matrix A that gives the bilinear form. Moreover, write the change of co-ordinates matrix S so that $S^{t} A S$ is in diagonal form.

Solution: As before, we easily calculate the symmetric matrix associated with $x^{2}+$ $2 x y+2 x z+2 y^{2}+3 y z+3 z^{2}$ to be

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 3 / 2 \\
1 & 3 / 2 & 3
\end{array}\right)
$$

and that associated with $x^{2}+2 x y+2 x z+y^{2}+y z+2 z^{2}$ to be

$$
B=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 / 2 \\
1 & 1 / 2 & 2
\end{array}\right)
$$

We saw above that the change of coordinates to get a diagonal form in the first case was given by $u=x+y+z, v=y+z / 2$ and $w=z$. The inverse change of co-ordinates
is given by $z=w, y=v-w / 2$ and $x=u-v-w / 2$. Thus, we see that

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 / 2 & -1 / 2 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 3 / 2 \\
1 & 3 / 2 & 3
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & -1 / 2 \\
0 & 1 & -1 / 2 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 7 / 4
\end{array}\right)
$$

We saw above that the change of coordinates to get a diagonal form in the second case was given by $u=x+y+z, v=y, w=z-y / 2$. The inverse change of co-ordinates is given by $y=v, z=w+v / 2$ and $x=u-(3 / 2) v-w$. Thus we see that

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-3 / 2 & 1 & 1 / 2 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 / 2 \\
1 & 1 / 2 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & -3 / 2 & -1 \\
0 & 1 & 0 \\
0 & 1 / 2 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 / 4 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

5. Find the rank and signature of the following symmetric matrix

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

Solution: The associated quadratic form is

$$
w^{2}+2 w x+2 w z+2 x y+2 x z+z^{2}
$$

We simplify

$$
\begin{aligned}
& w^{2}+2 w x+2 w z+2 x y+2 x z+z^{2}= \\
& (w+z)^{2}+2 x(w+z)+2 x y= \\
& (w+z+x)^{2}-x^{2}+2 x y= \\
& (w+x+z)^{2}-(x-y)^{2}+y^{2}
\end{aligned}
$$

Since the variables $w+x+z, x-y$ amd y are independent, we see that the rank is 3 and the signature is ($2,1,1$) (i.e. 2 positive, 1 null and 1 negative).
6. Let v_{1}, v_{2}, v_{3} be the column vectors of the matrix below. Apply Gram-Schmidt orthogonalisation to find a basis of orthogonal vectors of the form $v_{1}, v_{2}+a v_{1}, v_{3}+b v_{1}+c v_{2}$.

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Solution: We have $w_{2}=v_{2}+a v_{1}$ so that w_{2} is orthogonal to $w_{1}=v_{1}$ so $a=$ $-\left(w_{1}^{t} v_{2}\right) /\left(w_{1}^{t} w_{1}\right)=-1 / 2$. Hence, we get

$$
w_{2}=\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right)
$$

Similarly, $w_{3}=v_{3}+b v_{1}+c v_{2}$ so that w_{3} is orthogonal to w_{1} and w_{2}. We write $w_{3}=v_{3}+b^{\prime} w_{1}+c^{\prime} w_{2}$ where

$$
b^{\prime}=-\left(w_{1}^{t} v_{3}\right) /\left(w_{1}^{t} w_{1}\right)=-1 / 2 \text { and } c^{\prime}=-\left(w_{2}^{t} v_{3}\right) /\left(w_{2}^{t} w_{2}\right)=-(1 / 2) /(3 / 2)=-1 / 3
$$

Hence, we get

$$
w_{3}=\left(\begin{array}{c}
2 / 3 \\
-2 / 3 \\
2 / 3
\end{array}\right)
$$

The final orthogonal matrix is

$$
\left(\begin{array}{ccc}
1 & -1 / 2 & 2 / 3 \\
1 & 1 / 2 & -2 / 3 \\
0 & 1 & 2 / 3
\end{array}\right)
$$

7. Given a symmetric matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. Write down the conditions on the variables a, b and c that will make this a positive definite matrix.

Solution: We can write the associated quadratic form $a x^{2}+2 b x y+c y^{2}$. Since it has to be positive definite, we see that $a>0$ since the form has to be positive on $(1,0)$. By completing the square, we get $a(x+b y / a)^{2}+\left(c-b^{2} / a\right) y^{2}$. This shows that $c-b^{2} / a>0$ or equivalently $a c>b^{2}$. Since the above form is diagonal, we see that these two conditions $a>0$ and $a c>b^{2}$ are sufficient as well.
8. (Starred) Find a similar condition for the 6 entries of a symmetric 3×3 matrix.

Solution: Let us write the quadratic form for a symmetric 3×3 matrix

$$
\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)
$$

with variable coefficients

$$
a x^{2}+2 b x y+2 c x z+d y^{2}+2 e y z+f z^{2}
$$

We complete the first square to get

$$
a(x+b y / a+c z / a)^{2}+\left(d-b^{2} / a\right) y^{2}+2(e-b c / a) y z+\left(f-c^{2} / a\right) z^{2}
$$

As above, this means that $d-b^{2} / a>0$, or equivalently $a d>b^{2}$ for positivity. Further completing the square for the last three terms

$$
\left(d-b^{2} / a\right)\left(y+\frac{a e-b c}{a d-b^{2}} z\right)^{2}+\left(\frac{a f-c^{2}}{a}-\frac{(a e-b c)^{2}}{a\left(a d-b^{2}\right)}\right) z^{2}
$$

This gives the inequality

$$
\left(a f-c^{2}\right)\left(a d-b^{2}\right)>(a e-b c)^{2}
$$

Simplifying this and using $a>0$, we get

$$
a f d-f b^{2}-d c^{2}-a e^{2}+2 e b c>0
$$

Grouping terms together, this becomes

$$
a\left(d f-e^{2}\right)-b(b f-c e)+c(b e-d c)>0
$$

We note that the left-hand side is the determinant of the 3×3 matrix above. So we see that positivity is equivalent to the statement that the $1 \times 1,2 \times 2$ and 3×3 matrices along the diagonal are positive! This is not an accident, it can be shown, with a little work that this is the case for $n \times n$ matrices.
9. Given a symmetric matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.
(a) Find a vector v (with real entries) with $v \cdot v=1$ for which the quadratic form takes a maximum value.

Solution: Putting $v=(x, y)$ we see that the quadratic form is $q(x, y)=x^{2}+$ $2 x y$. Since the maximum is taken at an eigenvector, we calculate $\operatorname{det}(T-A)=$ $T^{2}-T-1$ with solution $T=\phi=(1+\sqrt{5}) / 2$ as the largest. The corresponding eigenvector is $(\phi, 1)$ and so the unit eigenvector is $(\phi, 1) / \sqrt{2+\phi}$.
(b) Using the above vector write an orthonormal matrix S so that $S^{-1} A S$ is diagonal.

Solution: The second eigenvector is perpendicular to the above one. Hence, it is $(-1, \phi) / \sqrt{2+\phi}$ with eigen value $1-\phi$. It follows that we put

$$
S=\frac{1}{\sqrt{2+\phi}}\left(\begin{array}{cc}
\phi & -1 \\
1 & \phi
\end{array}\right)
$$

to get $S^{t} A S$ as a digonal matrix with entries ϕ and $1-\phi$.
10. (Starred) Given a symmetric matrix A over \mathbb{Q}, show that its minimal polynomial has distinct roots.

Solution: A symmstric matrix A over \mathbb{Q} is also a symmetric matrix over \mathbb{R}. Hence, it is diagonalisable over \mathbb{R}. It follows that its minimal polynomial over \mathbb{Q} has distinct roots.
11. (Starred) If a symmetric matrix A is also nilpotent, then show that A is the 0 matrix.

Solution: Since the matrix A is diagonalisable and nilpotent it is 0 .

