Solutions to Quiz 5

1. Given the symmetric matrix below:

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

(a) Write down the quadratic form associated with the matrix.

Solution: We calculate

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=2(x y+y z+z x)
$$

(b) Convert the quadratic form to diagonal form.

Solution: We calculate

$$
2 x y=\frac{1}{2}\left((x+y)^{2}-(x-y)^{2}\right)
$$

Using this we get

$$
2 x y+2 y z+2 z x=\frac{1}{2}(x+y)^{2}-\frac{1}{2}(x-y)^{2}+2 z(x+y)
$$

Next we see that

$$
\frac{1}{2}(x+y)^{2}+2 z(x+y)=\frac{1}{2}\left((x+y)^{2}+4 z(x+y)\right)=\frac{1}{2}\left((x+y+2 z)^{2}-4 z^{2}\right)
$$

Substituting this we get

$$
2 x y+2 y z+2 z x=\frac{1}{2}(x+y+2 z)^{2}-2 z^{2}-\frac{1}{2}(x-y)^{2}
$$

Thus with the new variables $u=x+y+2 z, v=z$ and $w=x-y$ we have the diagonal form

$$
\frac{1}{2} u^{2}-2 v^{2}-\frac{1}{2} w^{2}
$$

(c) Write down the minimal polynomial of the matrix.

Solution: We calculate the characteristic polynomial

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
T & -1 & -1 \\
-1 & T & -1 \\
-1 & -1 & T
\end{array}\right)= \\
& \quad T\left(T^{2}-1\right)+(-T-1)-(1+T)=(T+1)\left(T^{2}-T-2\right)= \\
& (T+1)^{2}(T-2)
\end{aligned}
$$

Since the matrix is diagonalisable, its minimal polynomial has distinct roots and all the roots of the characteristic polynomial are roots of it. Hence, the minimal polynomial is $(T+1)(T-2)$.

