Assignment 12

Complex Numbers and Quaternions

- 1. Write the norms, conjugates and inverses of the following complex numbers and quaternions.
 - (a) $5 + 12\iota$
 - (b) $\sin t + \cos t\iota$.
 - (c) $\cos s \cos t + \sin s \sin t \hat{i} + \sin s \cos t \hat{k} + \cos s \sin t \hat{k}$
 - (d) $1 + \hat{i} + \hat{j} + \hat{k}$.
- 2. What are all the quaternions q so that $\hat{i}q\hat{i} = -q$.
- 3. Given a quaternion (a, v) characterise all quaternions q so that $q \odot (a, v) = (a, v) \odot q$.
- 4. For a fixed unit vector v define the map $w \mapsto v \times w \times v$ from 3-space to itself. Describe this map in words. Show that your description is correct by calculation.
- 5. Show that O(a, v) (conjugation by (a, v) on the quaternions of the form (0, w)) is a rotation in the plane perpendicular to v by an angle that is determined by a and (v, v).
- 6. Show that $(a, v) \mapsto O(a, v)$ gives a group homomorphism from S^3 to the group SO(3) of 3 dimensional rotations.
- 7. Show that this homomorphism is onto and has kernel $\{\pm 1\}$.