Complex Numbers and Quaternions

1. Write the norms, conjugates and inverses of the following complex numbers and quaternions.
(a) $5+12 \iota$
(b) $\sin t+\cos t \iota$.
(c) $\cos s \cos t+\sin s \sin t \hat{i}+\sin s \cos t \hat{k}+\cos s \sin t \hat{k}$
(d) $1+\hat{i}+\hat{j}+\hat{k}$.
2. What are all the quaternions q so that $\hat{i} q \hat{i}=-q$.
3. Given a quaternion (a, v) characterise all quaternions q so that $q \odot(a, v)=(a, v) \odot q$.
4. For a fixed unit vector v define the map $w \mapsto v \times w \times v$ from 3-space to itself. Describe this map in words. Show that your description is correct by calculation.
5. Show that $O(a, v)$ (conjugation by (a, v) on the quaternions of the form $(0, w)$) is a rotation in the plane perpendicular to v by an angle that is determined by a and (v, v).
6. Show that $(a, v) \mapsto O(a, v)$ gives a group homomorphism from S^{3} to the group $S O(3)$ of 3 dimensional rotations.
7. Show that this homomorphism is onto and has kernel $\{ \pm 1\}$.
