
Spectral Theorem for Normal Operators

Recall that a normal operator S is one that commutes with its own adjoint S∗.

We will work over finite dimensional vector spaces.

We have seen earlier that an invertible normal operator G can be written as
G = KP = PK where K is unitary and P is positive self-adjoint.

We have also seen that a unitary operators (respectively positive self-adjoint
operator) has an orthonormal basis of eigenvectors.

Simultaneous Diagonalisation

Suppose A and B are commuting matrices. Then, for an eigenvector v of A we
have

ABv = BAv = Bλv = λBv

where λ is the eigenvalue of A associated with the eigenvector v. Thus, if we
denote by Vλ the space of all vectors v (including 0!) for which Av = λv, then
B takes this subspace to itself.

If A is diagonalisable, then we can write a basis of eigenvectors, hence we can
express every vector v as a (unique) linear combination of elements vλ ∈ Vλ as
we vary λ over eigenvalues of A. Further B takes each Vλ to itself.

If, in addition, B is diagonalisable, then we can further write Vλ in terms of a
basis of eigenvectors for B. (Note that the minimal polynomial of B|Vλ

divides
the minimal polynomial of B and thus has distinct roots!). This gives a basis of
our original vector space which consists of simultaneous eigenvectors for both A
and B (since each non-zero element of Vλ is an eigenvector of A).

In summary, if A and B commute and are diagonalisable, then we can find a
basis consisting of simultanous eigenvectors for A and B. This argument can
easily be extended to any set of commuting diagonalisable matrices.

The invertible case

We now apply this to the decomposition G = KP = PK for a normal invertible
matrix G which we saw above. Recall that K is unitary and P is positive definite.
By the above argument, we can find an unitary basis consisting of simultaneous
eigenvectors for K and P . It is clear that these are eigenvectors for G as well.

Let Vk,p denote the subspace of vectors v so that Kv = kv and Pv = pv; in
other words, Vk,p is the subspace spanned by simultanous eigenvectors for K
and P with eigenvalues k and p respectively. Let v be in Vk,p and w be in Vk′,p′

with (k, p) 6= (k′, p′). We then calculate

p〈v, w〉 =〉Pv,w〉 = 〈v, Pw〉 = p′〈v, w〉
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where we have used the fact that p′ is real. If p 6= p′, then this says 〈v, w〉 = 0.
Similarly,

〈v, w〉 =〉Uv,Uw〉 = kk′〈v, w〉

Now, k′ is a complex number of norm 1 so k′ its multiplicative inverse. Thus,
if k 6= k′, then 〈v, w〉 = 0. It follows that Vk′,p′ is contained in V ⊥k,p if (k, p) 6=
(k′, p′).

Let Ek,p be the orthogonal projection onto Vk,p that was constructed earlier. We
see that Ek,pEk′,p′ = 0 if (k, p) 6= (k′, p′). Moreover,

K =
∑
k

k
∑
p

Ek,pandP =
∑
p

p
∑
k

Ek,p

since both K and P are diagonalisable. It follows that

G = KP =
∑
k,p

kpEk,p

Now note that λ = kp is an eigenvalue of G. Moreover, since p is positive, we
have |λ| = p. So, λ = λ′, if and only if (k, p) = (k′p′).

In other words, G is a sum of matrices of the form λEλ where λ is an eigenvalue
of G and Eλ is an orthogonal projection onto the subspace where G acts as
multiplication by λ (this is called the λ-eigenspace of G). Moreover, EλEµ = 0
if λ 6= µ.

Spectral Theorem for Normal Operators

Now suppose that M is a normal operator, i.e. M commutes with M∗, on a
finite dimensional complex inner-product space V . As seen earlier, V has an
orthonormal basis. Let M also denote the matrix of of M with respect to this
bases. As seen earlier the matrix of the adjoint operator is also M∗ with respect
to this orthonormal basis.

Consider the characteristic polynomial P (T ) = det(M−T ·1). This is a non-zero
polynomial since its leading coefficient Tn where n is the dimension of V . Hence
there is an integer k so that P (k) 6= 0. It follows that G = M − k · 1 is an
invertible matrix. Clearly G∗ = M∗− k · 1 commutes with M and thus also with
G. In other words G is a normal invertible matrix.

By what has been proved above we have an expression G =
∑
λ λEλ where Eλ

are orthogonal projectors such that EλEµ = 0 if λ 6= µ. As proved above G has
a basis consisting of eigenvectors each such vector is in the image of Eλ for some
λ (note that G has only non-zero eigenvalues!). It follows that E =

∑
λEλ is

identity on this basis of eigenvectors; hence, E = 1. We thus obtain the identity
M = G+ k · 1 =

∑
λ(λ+ k)Eλ. We have thus obtained “spectral decomposition”

of the normal operator M .
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Conversely, suppose M =
∑
λ λEλ where Eλ are orthogonal idempotents with

EλEµ = 0 if λ 6= µ. ThenM∗ =
∑
λEλ, since E∗λ = Eλ. Moreover,M commutes

with all the Eλ, and thus commutes with M∗ as well.

In summary, a matrix is normal if and only if it can be written as a linear
combination of orthogonal idempotents Eλ such that EλEµ = 0 when λ 6= µ
and

∑
λEλ = 1. This is called the spectral theorem for normal operators and

the above expression for the operator is called the spectral decomposition of the
operator.
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