Spectral Theorem for Normal Operators

Recall that a normal operator S is one that commutes with its own adjoint S^{*}.
We will work over finite dimensional vector spaces.
We have seen earlier that an invertible normal operator G can be written as $G=K P=P K$ where K is unitary and P is positive self-adjoint.
We have also seen that a unitary operators (respectively positive self-adjoint operator) has an orthonormal basis of eigenvectors.

Simultaneous Diagonalisation

Suppose A and B are commuting matrices. Then, for an eigenvector v of A we have

$$
A B v=B A v=B \lambda v=\lambda B v
$$

where λ is the eigenvalue of A associated with the eigenvector v. Thus, if we denote by V_{λ} the space of all vectors v (including $0!$) for which $A v=\lambda v$, then B takes this subspace to itself.

If A is diagonalisable, then we can write a basis of eigenvectors, hence we can express every vector v as a (unique) linear combination of elements $v_{\lambda} \in V_{\lambda}$ as we vary λ over eigenvalues of A. Further B takes each V_{λ} to itself.
If, in addition, B is diagonalisable, then we can further write V_{λ} in terms of a basis of eigenvectors for B. (Note that the minimal polynomial of $B_{\mid V_{\lambda}}$ divides the minimal polynomial of B and thus has distinct roots!). This gives a basis of our original vector space which consists of simultaneous eigenvectors for both A and B (since each non-zero element of V_{λ} is an eigenvector of A).

In summary, if A and B commute and are diagonalisable, then we can find a basis consisting of simultanous eigenvectors for A and B. This argument can easily be extended to any set of commuting diagonalisable matrices.

The invertible case

We now apply this to the decomposition $G=K P=P K$ for a normal invertible matrix G which we saw above. Recall that K is unitary and P is positive definite. By the above argument, we can find an unitary basis consisting of simultaneous eigenvectors for K and P. It is clear that these are eigenvectors for G as well.
Let $V_{k, p}$ denote the subspace of vectors v so that $K v=k v$ and $P v=p v$; in other words, $V_{k, p}$ is the subspace spanned by simultanous eigenvectors for K and P with eigenvalues k and p respectively. Let v be in $V_{k, p}$ and w be in $V_{k^{\prime}, p^{\prime}}$ with $(k, p) \neq\left(k^{\prime}, p^{\prime}\right)$. We then calculate

$$
p\langle v, w\rangle=\rangle P v, w\rangle=\langle v, P w\rangle=p^{\prime}\langle v, w\rangle
$$

where we have used the fact that p^{\prime} is real. If $p \neq p^{\prime}$, then this says $\langle v, w\rangle=0$. Similarly,

$$
\langle v, w\rangle=\rangle U v, U w\rangle=k \overline{k^{\prime}}\langle v, w\rangle
$$

Now, k^{\prime} is a complex number of norm 1 so $\overline{k^{\prime}}$ its multiplicative inverse. Thus, if $k \neq k^{\prime}$, then $\langle v, w\rangle=0$. It follows that $V_{k^{\prime}, p^{\prime}}$ is contained in $V_{k, p}^{\perp}$ if $(k, p) \neq$ $\left(k^{\prime}, p^{\prime}\right)$.

Let $E_{k, p}$ be the orthogonal projection onto $V_{k, p}$ that was constructed earlier. We see that $E_{k, p} E_{k^{\prime}, p^{\prime}}=0$ if $(k, p) \neq\left(k^{\prime}, p^{\prime}\right)$. Moreover,

$$
K=\sum_{k} k \sum_{p} E_{k, p} \text { and } P=\sum_{p} p \sum_{k} E_{k, p}
$$

since both K and P are diagonalisable. It follows that

$$
G=K P=\sum_{k, p} k p E_{k, p}
$$

Now note that $\lambda=k p$ is an eigenvalue of G. Moreover, since p is positive, we have $|\lambda|=p$. So, $\lambda=\lambda^{\prime}$, if and only if $(k, p)=\left(k^{\prime} p^{\prime}\right)$.

In other words, G is a sum of matrices of the form λE_{λ} where λ is an eigenvalue of G and E_{λ} is an orthogonal projection onto the subspace where G acts as multiplication by λ (this is called the λ-eigenspace of G). Moreover, $E_{\lambda} E_{\mu}=0$ if $\lambda \neq \mu$.

Spectral Theorem for Normal Operators

Now suppose that M is a normal operator, i.e. M commutes with M^{*}, on a finite dimensional complex inner-product space V. As seen earlier, V has an orthonormal basis. Let M also denote the matrix of of M with respect to this bases. As seen earlier the matrix of the adjoint operator is also M^{*} with respect to this orthonormal basis.

Consider the characteristic polynomial $P(T)=\operatorname{det}(M-T \cdot 1)$. This is a non-zero polynomial since its leading coefficient T^{n} where n is the dimension of V. Hence there is an integer k so that $P(k) \neq 0$. It follows that $G=M-k \cdot 1$ is an invertible matrix. Clearly $G^{*}=M^{*}-k \cdot 1$ commutes with M and thus also with G. In other words G is a normal invertible matrix.

By what has been proved above we have an expression $G=\sum_{\lambda} \lambda E_{\lambda}$ where E_{λ} are orthogonal projectors such that $E_{\lambda} E_{\mu}=0$ if $\lambda \neq \mu$. As proved above G has a basis consisting of eigenvectors each such vector is in the image of E_{λ} for some λ (note that G has only non-zero eigenvalues!). It follows that $E=\sum_{\lambda} E_{\lambda}$ is identity on this basis of eigenvectors; hence, $E=1$. We thus obtain the identity $M=G+k \cdot 1=\sum_{\lambda}(\lambda+k) E_{\lambda}$. We have thus obtained "spectral decomposition" of the normal operator M.

Conversely, suppose $M=\sum_{\lambda} \lambda E_{\lambda}$ where E_{λ} are orthogonal idempotents with $E_{\lambda} E_{\mu}=0$ if $\lambda \neq \mu$. Then $M^{*}=\sum_{\lambda} E_{\lambda}$, since $E_{\lambda}^{*}=E_{\lambda}$. Moreover, M commutes with all the E_{λ}, and thus commutes with M^{*} as well.

In summary, a matrix is normal if and only if it can be written as a linear combination of orthogonal idempotents E_{λ} such that $E_{\lambda} E_{\mu}=0$ when $\lambda \neq \mu$ and $\sum_{\lambda} E_{\lambda}=1$. This is called the spectral theorem for normal operators and the above expression for the operator is called the spectral decomposition of the operator.

