Spectral Theorem for Normal Operators

Recall that a normal operator S is one that commutes with its own adjoint S*.
We will work over finite dimensional vector spaces.

We have seen earlier that an invertible normal operator G can be written as
G = KP = PK where K is unitary and P is positive self-adjoint.

We have also seen that a unitary operators (respectively positive self-adjoint
operator) has an orthonormal basis of eigenvectors.

Simultaneous Diagonalisation

Suppose A and B are commuting matrices. Then, for an eigenvector v of A we

have
ABv = BAv = BA\v = A\Bv

where A is the eigenvalue of A associated with the eigenvector v. Thus, if we
denote by V) the space of all vectors v (including 0!) for which Av = Av, then
B takes this subspace to itself.

If A is diagonalisable, then we can write a basis of eigenvectors, hence we can
express every vector v as a (unique) linear combination of elements vy € V) as
we vary A over eigenvalues of A. Further B takes each V) to itself.

If, in addition, B is diagonalisable, then we can further write V) in terms of a
basis of eigenvectors for B. (Note that the minimal polynomial of By, divides
the minimal polynomial of B and thus has distinct roots!). This gives a basis of
our original vector space which consists of simultaneous eigenvectors for both A
and B (since each non-zero element of V) is an eigenvector of A).

In summary, if A and B commute and are diagonalisable, then we can find a
basis consisting of simultanous eigenvectors for A and B. This argument can
easily be extended to any set of commuting diagonalisable matrices.

The invertible case

We now apply this to the decomposition G = K P = PK for a normal invertible
matrix G which we saw above. Recall that K is unitary and P is positive definite.
By the above argument, we can find an unitary basis consisting of simultaneous
eigenvectors for K and P. It is clear that these are eigenvectors for G as well.

Let Vi, denote the subspace of vectors v so that Kv = kv and Pv = pv; in
other words, V}, , is the subspace spanned by simultanous eigenvectors for K
and P with eigenvalues k and p respectively. Let v be in V}, , and w be in Vi
with (k,p) # (', p"). We then calculate

pv, w) =) Pv,w) = (v, Pw) = p'{v,w)



where we have used the fact that p’ is real. If p # p’, then this says (v, w) = 0.
Similarly, o
(v, wy =)Uv, Uw) = kk' (v, w)

Now, k' is a complex number of norm 1 so k' its multiplicative inverse. Thus,
if k # k', then (v,w) = 0. It follows that Vj , is contained in kap if (k,p) #
(K',p").

Let E} , be the orthogonal projection onto Vj ,, that was constructed earlier. We
see that Ey ,Ey v = 0 if (k,p) # (K',p’). Moreover,

K=Y kY e =YY
k P P k
since both K and P are diagonalisable. It follows that

G=KP=> kpE,
k,p

Now note that A = kp is an eigenvalue of G. Moreover, since p is positive, we
have |A| = p. So, A =X, if and only if (k,p) = (K'p’).

In other words, G is a sum of matrices of the form AE) where A is an eigenvalue
of G and FE, is an orthogonal projection onto the subspace where G acts as
multiplication by A (this is called the A-eigenspace of G). Moreover, ExE, =0

if A # pu.

Spectral Theorem for Normal Operators

Now suppose that M is a normal operator, i.e. M commutes with M™*, on a
finite dimensional complex inner-product space V. As seen earlier, V has an
orthonormal basis. Let M also denote the matrix of of M with respect to this
bases. As seen earlier the matrix of the adjoint operator is also M* with respect
to this orthonormal basis.

Consider the characteristic polynomial P(T) = det(M —T'-1). This is a non-zero
polynomial since its leading coefficient T™ where n is the dimension of V. Hence
there is an integer k so that P(k) # 0. It follows that G = M — k-1 is an
invertible matrix. Clearly G* = M* — k-1 commutes with M and thus also with
G. In other words G is a normal invertible matrix.

By what has been proved above we have an expression G = ), AE) where Ey
are orthogonal projectors such that Ey\E, = 0 if A # p. As proved above G has
a basis consisting of eigenvectors each such vector is in the image of E for some
A (note that G has only non-zero eigenvalues!). It follows that E =), E) is
identity on this basis of eigenvectors; hence, E = 1. We thus obtain the identity
M=G+k-1=),(A+k)E\. We have thus obtained “spectral decomposition”
of the normal operator M.



Conversely, suppose M =), AE) where E are orthogonal idempotents with
E\E, =0if X # p. Then M* =", Ej, since E{ = E. Moreover, M commutes
with all the ), and thus commutes with M™* as well.

In summary, a matrix is normal if and only if it can be written as a linear
combination of orthogonal idempotents E such that ExE, = 0 when A # u
and ), Ex = 1. This is called the spectral theorem for normal operators and
the above expression for the operator is called the spectral decomposition of the
operator.
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