
Matrix Decompositions

The “pivot” method for doing row reduction of a matrix M can be seen as
writing M = πLU where π is a permutation matrix, L is lower triangular (with
no restriction on the diagonal entries) and U is upper triangular matrix with 1’s
on the diagonal.

There are other ways in we can decompose matrices. In what follows, we will
assume that G is an invertible matrix with complex entries.

KAN

The columns of G can be seen as a basis v1, . . . , vn of the vector space Cn which
is an inner product space with the usual inner product 〈v, w〉 = wtv (using
the column vector notation for elements of Cn). As seen above, we can apply
Gram-Schmidt orthogonalisation to obtain a new basis f1, . . . , fn so that

[f1, . . . , fn] = [v1, . . . , vn]N1

where N1 is an upper triangular matrix with 1’s on the diagonals. Further, we
can write ei = fi/|fi| where |fi| is the positive square root of (the positive real
number) 〈fi, fi〉.

[e1, . . . , en] = [f1, . . . , fn]A1

where A1 is a diagonal matrix with diagonal entries 1/|fi| which are positive
real numbers. Now e1, . . . , en is an orthonormal basis so that K = [e1, . . . , en] is
a unitary matrix. We put N = N−1

1 and A = A−1
1 . (Note that N is also upper

triangular with with 1’s on the diagonal). It follows that we have

G = [v1, . . . , vn] = K ·A ·N

where K is a unitary matrix, A is a diagonal matrix with positive real numbers
on the diagonal and N is a upper triangular matrix with 1’s on the diagonal.

KP

Consider the matrix Q = G∗G. We easily check that this is Hermitian. In fact
it also satisfies vtQv ≥ 0 with equality if and only if v = 0; in other words, it is
positive definite.

In general, if A : V → V is a self-adjoint operator on a complex inner-product
space, we have seen that 〈Av, v〉 is a real number. If in addition it is a non-
negative real number which is 0 if and only if v = 0, we say that A is a positive
(definite) self-adjoint operator.

We have seen that there is an orthonormal basis u1, . . . , un which consists of
eigenvectors of Q. We put U = [u1, . . . , un] so that we have QU = UB where
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B is a diagonal matrix with diagonal entries as the eigenvalues of Q. We easily
show that the eigenvalues of Q are positive real numbers since Q is positive
self-adjoint. It follows that B = A2 where A is the diagonal matrix with diagonal
entries as the positive square roots of the corresponding diagonal entries of B. If
we put P = UAU−1, then we easily check that P is Hermitian and self-adjoint
and that P 2 = Q. Finally, we put K = GP−1 so that G = KP . We note that

K∗K = (GP−1)∗GP−1 = P−1G ∗GP−1 = P−1QP−1 = 1

where we have used P ∗ = P and P 2 = Q. In other words, K is unitary.

It follows that any invertible matrix can be written as the product of a unitary
matrix and a positive definite matrix.

For future reference, let us note that if G is a normal matrix (i.e. G∗ commutes
with G), then G and Q commute. It follows easily that G and P also commute
and hence K and P also commute. In other words, a normal matrix can be
written as a product of a commuting pair of a unitary matrix and a positive
definite matrix.

KAK

As above, we can write Q = G∗G, which is a positive definite Hermitian matrix.
Repeating the above, we can write QU = UB, where U is a unitary matrix and
B a diagonal matrix with positive entries on the diagonal. As before, we put
A as the square-root of B obtained as a diagonal matrix with diagonal entries
as the square-root of the corresponding diagonal entries of B. We then put
V = GUA−1 and calculate

V ∗V = A−1U∗G∗GUA−1 = A−1U∗QUA−1 = A−1BA−1 = 1

where we have used A∗ = A and U∗ = U−1. Thus, we have written G = V AU∗.
In other words, every invertible matrix is a product of a unitary matrix, a
diagonal matrix with positive real entries on the diagonal, followed by another
unitary matrix.

All of the above decompositions are useful when we want to solve various
computational problems connected with matrices.
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