Complex Inner Product Spaces

A vector space V over the field \mathbb{C} of complex numbers is called a (complex) inner product space if it is equipped with a pairing

$$
\langle,\rangle: V \times V \rightarrow \mathbb{C}
$$

which has the following properties:

1. (Sesqui-symmetry) For every v, w in V we have $\langle w, v\rangle=\overline{\langle v, w\rangle}$.
2. (Linearity) For every u, v, w in V and a in \mathbb{C} we have langleau $+v, w\rangle=$ $a\langle u, w\rangle+\langle v, w\rangle$.
3. (Positive definite-ness) For every v in V, we have $\langle v, v\rangle \geq 0$. Moreover, if $\langle v, v\rangle=0$, the v must be 0 .

Sometimes the third condition is replaced by the following weaker condition:
3'. (Non-degeneracy) For every v in V, there is a w in V so that $\langle v, w\rangle \neq 0$.
We will generally work with the stronger condition of positive definite-ness as is conventional.

A basis f_{1}, f_{2}, \ldots of V is called orthogonal if $\left\langle f_{i}, f_{j}\right\rangle=0$ if $i<j$. An orthogonal basis of V is called an orthonormal (or unitary) basis if, in addition $\left\langle f_{i}, f_{i}\right\rangle=1$.

Given a linear transformation $A: V \rightarrow V$ and another linear transformation $B: V \rightarrow V$, we say that B is the adjoint of A, if for all v, w in V, we have $\langle A v, w\rangle=\langle v, B w\rangle$. By sesqui-symmetry we see that A is then the adjoint of B as well. Moreover, by positive definite-ness, we see that if A has an adjoint B, then this adjoint is unique. Note that, when V is infinite dimensional, we may not be able to find an adjoint for $A!$ In case it does exist it is denoted as A^{*}.

A linear transformation $A: V \rightarrow V$ is called a self-adjoint operator on V (with respect to \langle,$\rangle) if we have, for all v$ and w in V,

$$
\langle A v, w\rangle=\langle v, A w\rangle
$$

Comparing with the definition above, this is equivalent to the assertion that A is its own adjoint.

An invertible linear transformation $U: V \rightarrow V$ is called a unitary operator on V (with respect to \langle,$\rangle) if we have, for all v$ and w in V,

$$
\langle U v, U w\rangle=\langle v, w\rangle
$$

Since U has an inverse U^{-1}, we can also write this as

$$
\langle U v, w\rangle=\left\langle v, U^{-1} w\right\rangle
$$

Comparison with the above identity shows that $U^{*}=U^{-1}$.
Given a linear transformation $T: V \rightarrow V$ which has an adjoint T^{*}. We say that T is normal if T^{*} commutes with T. Note that an operator commutes with itself and with its inverse (if the inverse exists). This shows that self-adjoint operators and unitary operators are normal.

Gram-Schmidt Orthogonalisation

Given a complex inner product space and a basis $v_{1}, v_{2}, \ldots v_{n}$, we would like to produce and orthogonal/orthonormal basis. The procedure is essentially identical to the earlier one for the real case.

We define $f_{1}=v_{1}$ and put

$$
w_{k}=v_{k}-\frac{\left\langle v_{1}, v_{k}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} \text { for } k \geq 2
$$

This makes $\left\langle f_{1}, w_{k}\right\rangle=0$ for all $k \geq 2$. We can then repeat the process with w_{2}, \ldots, w_{n}. This results in a basis (Exercise: Why is it a basis?) $f_{1}, f_{2}, \ldots, f_{n}$, so that $\left\langle f_{i}, f_{j}\right\rangle=0$ for $i<j$. In other words, this is an orthogonal basis.

Defining $e_{i}=f_{i} /\left\langle f_{i}, f_{i}\right\rangle^{1 / 2}$, we see that this is an orthonormal or unitary basis.
In particular, this shows that any finite dimensional complex inner product space has a orthonormal (unitary) basis.

Suppose $f: V \rightarrow \mathbb{C}$ is a linear map and let $f\left(e_{i}\right)=a_{i}$. We then define the vector $w_{f}=\sum_{i=1}^{n} \overline{a_{i}} e_{i}$; note that this sum does not make sense if V is infinite dimensional!

Now note that $\left\langle e_{i}, w_{f}\right\rangle=f\left(e_{i}\right)$. This can be used to show that $\left\langle v, w_{f}\right\rangle=f(v)$ for all vectors v in V since both sides are linear maps on V and they are equal on the basis vectors. Moreover, if $\langle v, w\rangle=\left\langle v, w^{\prime}\right\rangle$ for all v, then it is easy to show that $w=w^{\prime}$. Thus, we have shown that any linear map $f: V \rightarrow \mathbb{C}$ on a finite dimensional complex inner product space is of the form $v \mapsto\langle v, w\rangle$ for a suitably chosen vector w in V.

Given an orthonormal basis e_{1}, \ldots, e_{n} of a complex inner product space, let us try to understand the inner product in terms of co-ordinates. Given vectors $v=\sum_{i=1}^{n} v_{i} e_{i}$ and $w=\sum_{i=1}^{n} w_{j} e_{j}$, we see that

$$
\langle v, w\rangle=\sum_{i=1}^{n} v_{i} \overline{w_{i}}=\left(\begin{array}{lll}
\overline{w_{1}} & \ldots & \overline{w_{n}}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)
$$

Note that this expression will not be correct if we use a basis which is not orthonormal. Now if U is a unitary transformation, and we define $u_{i}=U e_{i}$, the u_{1}, \ldots, u_{n} is another orthonormal basis. Writing $u_{i}=\sum_{j=1}^{n} u_{j, i} e_{j}$ as a column
vector with entries $u_{i, j}$, and using the calculation of the inner-product above, we see that

$$
\left(\begin{array}{ccc}
\overline{u_{1,1}} & \ldots & \overline{u_{n, 1}} \\
\vdots & \ddots & \vdots \\
\overline{u_{n, 1}} & \ldots & \overline{u_{n, n}}
\end{array}\right) \cdot\left(\begin{array}{ccc}
u_{1,1} & \ldots & u_{1, n} \\
\vdots & \ddots & \vdots \\
u_{n, 1} & \ldots & u_{n, n}
\end{array}\right)=\left(\begin{array}{ccc}
1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1
\end{array}\right)
$$

In other words, the matrix M associated with a unitary transformation in an orthonormal basis satisfies $\bar{M}^{t} M=1$, i.e. it is a unitary matrix. This is why an orthonormal basis is sometimes also called a unitary basis.
Similarly, let us examine the matrix associated with a self-adjoint transformation A. Writing $A e_{i}=\sum_{i=1}^{n} a_{i, j} e_{j}$, we have (since e_{1}, \ldots, e_{n} is orthonormal)

$$
a_{i, j}=\left\langle A e_{i}, e_{j}\right\rangle=\left\langle e_{i}, A e_{j}\right\rangle=\overline{\left\langle A e_{j}, e_{i}\right\rangle}=\overline{a_{j, i}}
$$

Thus the matrix associated with A is Hermitian, i.e. $A=\bar{A}^{t}$.
Now suppose that $A: V \rightarrow V$ is a linear transformation and for a vector w in V, let us define the linear functional $f=f_{A, w}: v \mapsto\langle A v, w\rangle$. When V is a finite dimensional complex inner product space, we have seen that there is a vector w_{f} so that $f(v)=\left\langle v, w_{f}\right\rangle$. Thus, we get a set-theoretic map $B: V \rightarrow V$ defined by $w \mapsto w_{f}$. In other words, we have the identity $\langle A v, w\rangle=\langle v, B w\rangle$ for all v and w in V. It is now an easy exercise to check that B is a linear map from the complex vector space V to itself. This shows that any linear transformation on a finite-dimensional complex inner-product space has an adjoint. As above, we can easily show that if M is the matrix associated with A in on orthonormal basis, then its adjoint is given by \bar{M}^{t}. For that reason we sometimes use the notation $M^{*}=\bar{M}^{t}$.

Note: The above statements converting from linear transformations to matrices are only valid when one uses an orthonormal basis.

Orthogonal complements and Projections

Given a subspace W of a complex inner-product space V, we can define its orthogonal complement

$$
W^{\perp}=\{v \in V \mid\langle v, w\rangle=0 \forall w \in W\}
$$

as the collection of all vectors v whose inner-product with any vector w in W is 0 .

We note that the pairing restricted to W makes it into a complex inner product space. Thus, if W is finite dimensional, then we can find an orthonormal basis e_{1}, \ldots, e_{m} of W.

Given any vector v in V, we can define $P v$ by the formula

$$
P v=\sum_{i=1}^{m}\left\langle v, e_{i}\right\rangle e_{i}
$$

(Note the similarity with the formula used above for Gram-Schmidt orthogonalisation.) It is clear that $P: V \rightarrow V$ is a linear transformation.

We check that $P e_{i}=e_{i}$ for all i and $P v$ lies in W for every v in V. It follows that $P^{2}=P$. So P is an idempotent transformation $V \rightarrow V$. Now,

$$
\left.\langle P v, w\rangle=\sum_{i=1}^{m}\left\langle v, e_{i}\right\rangle e_{i}, w\right\rangle=\sum_{i=1}^{m} \overline{\left.\left\langle w, e_{i}\right\rangle e_{i}, v\right\rangle}=\overline{\langle P w, v\rangle}=\langle v, P w\rangle
$$

In other words, P is also self-adjoint, so it is a self-adjoint idempotent.
As we have seen in our study of idempotents P, we can write any vector v as $(1-P) v+P v$, in other words V is decomposed in the image of P and the image of $(1-P)$. Further, if P is self-adjoint, then

$$
\langle(1-P) v, P w\rangle=\langle P(1-P) v, w\rangle=\langle 0, w\rangle=0
$$

Thus, if W is the image of P then the image of $1-P$ is contained in W^{\perp}. Thus, V is the orthogonal sum of W and W^{\perp}.

In summary, a self-adjoint idempotent P (also called an orthogonal projection) leads to an orthogonal decomposition of the vector space into the image of P and the image of $1-P$. If W is a finite dimensional subspace of V, then there is an orthogonal idempotent P whose image is W.

Eigenvector for an operator

Given a linear transformation $A: V \rightarrow V$ on a finite dimensional complex vector space, we can choose a basis of V and represent it as a matrix which we also denote by A. The polynomial equation $\operatorname{det}(A-T \cdot 1)=0$ has a solution $T=\lambda$ over the field of complex numbers (by an application of the fundamental theorem of algebra). It follows that $\operatorname{det}(A-\lambda \cdot 1)=0$. Thus, by the usual procedure for solving a finite system of linear equations, we can find a non-zero vector v so that $(A-\lambda \cdot 1) v=0$; equivalently $A v=\lambda v$. Thus, we have proved that a linear transformation $A: V \rightarrow V$ on a finite dimensional complex vector space has an eigenvector.

Exercise: Consider the vector space V consisting of all polynomials in z^{-1} which can be considered as functions on the $\mathbb{C}-\{0\}$. The operator $D: V \rightarrow V$ sends each such polynomial function to its derivative. In other words $z^{-k} \mapsto-k z^{-k-1}$. Check that there is no eigenvector.
Thus, the finite dimensionality of V is important. For infinite dimensional spaces we will have to work harder to find eigenvectors!

Self-Adjoint Operators

Given a self-adjoint operator $A: V \rightarrow V$ on a complex inner-product space and an eigenvector $v \neq 0$, so that $A v=\lambda v$ for eigenvalue λ. We then have

$$
\lambda\langle v, v\rangle=\langle\lambda v, v\rangle=\langle A v, v\rangle=\langle v, A v\rangle=\langle v, \lambda v\rangle=\bar{\lambda}\langle v, v\rangle
$$

Since $v \neq 0$, we have $\langle v, v\rangle \neq 0$ so we get $\lambda=\bar{\lambda}$. In other words, we have shown that any eigenvalue of a self-adjoint operator is real.
If v is an eigenvector of A, let us consider the space

$$
v^{\perp}=\{w \in V \mid\langle v, w\rangle=0\}
$$

We check that if w is in v^{\perp}, then

$$
\langle v, A w\rangle=\langle A v, w\rangle=\lambda\langle v, w\rangle=0
$$

Hence, A sends v^{\perp} to itself. It is obvious that v^{\perp} is a complex inner-product space and that the restriction of A to v^{\perp} is self-adjoint.

In particular, we see by induction on dimension that given a self-adjoint operator A on a finite-dimensional complex inner product space V, there is an orthogonal (by scaling we can make it orthonormal) basis of V consisting of eigenvectors of A. Moreover, the eigenvalues are real numbers.

Unitary Operators

Given a unitary operator $U: V \rightarrow V$ on a complex inner-product space and an eigen vector $v \neq 0$, so that $U v=\lambda v$ for eigenvalue λ. We then have

$$
\langle v, v\rangle=\langle U v, U v\rangle=\langle\lambda v, \lambda v\rangle=|\lambda|^{2}\langle v, v\rangle
$$

Hence, we see that $|\lambda|^{2}=1$. In other words, λ lies on the unit circle S^{1} in the complex plane \mathbb{C}. Thus any eigenvalue of a unitary matrix has absolute value 1 .
If v is an eigenvector of A, let us consider the space

$$
v^{\perp}=\{w \in V \mid\langle v, w\rangle=0\}
$$

We check that if w is in v^{\perp}, then

$$
\lambda\langle v, U w\rangle=\langle U v, U w\rangle=\langle v, w\rangle=0
$$

Since $\lambda \neq 0$ (it has absolute value 1), it follows that $U w$ also lies in v^{\perp}. In other words, U takes v^{\perp} to itself. It is obvious, as before, that v^{\perp} is a complex innerproduct space and that the restriction of U to v^{\perp} is a unitary transformation.
In particular, we see by induction on dimension that give a self-adjoint operator U on a finite-dimensional complex inner product space V, there is an orthonormal
basis of V consisting of eigenvectors of A. Moreover, the eigenvalues are of absolute value 1.

The above results can be extended to normal operators. We will show that a linear transformation of a finite dimensional inner product space to itself is normal if and only if there is an orthonormal basis consisting of eigenvectors of the transformation.

