Complex Inner Product Spaces

A vector space V over the field C of complex numbers is called a (complex) inner
product space if it is equipped with a pairing

():VxV—=C

which has the following properties:

1. (Sesqui-symmetry) For every v, w in V' we have (w,v) = (v, w).

2. (Linearity) For every u, v, w in V and a in C we have langleau 4+ v, w) =
alu,w) + (v, w).

3. (Positive definite-ness) For every v in V', we have (v,v) > 0. Moreover, if
(v,v) =0, the v must be 0.

Sometimes the third condition is replaced by the following weaker condition:
3’ (Non-degeneracy) For every v in V, there is a w in V' so that (v, w) # 0.

We will generally work with the stronger condition of positive definite-ness as is
conventional.

A basis f1, fa,... of V is called orthogonal if (f;, f;) = 0if ¢ < j. An orthogonal
basis of V' is called an orthonormal (or unitary) basis if, in addition (f;, f;) = 1.

Given a linear transformation A : V' — V and another linear transformation
B :V — V, we say that B is the adjoint of A, if for all v, w in V|, we have
(Av, w) = (v, Bw). By sesqui-symmetry we see that A is then the adjoint of B
as well. Moreover, by positive definite-ness, we see that if A has an adjoint B,
then this adjoint is unique. Note that, when V is infinite dimensional, we may
not be able to find an adjoint for A! In case it does exist it is denoted as A*.

A linear transformation A : V — V is called a self-adjoint operator on V (with
respect to (,)) if we have, for all v and w in V,

(Av,w) = (v, Aw)

Comparing with the definition above, this is equivalent to the assertion that A
is its own adjoint.

An invertible linear transformation U : V' — V is called a unitary operator on V
(with respect to (,)) if we have, for all v and w in V|

<UU> Uw> = <”U, w>
Since U has an inverse U ™!, we can also write this as

(Uv,w) = (v, U w)



Comparison with the above identity shows that U* = U1,

Given a linear transformation 7" : V' — V which has an adjoint 7. We say that
T is normal if T* commutes with T'. Note that an operator commutes with itself
and with its inverse (if the inverse exists). This shows that self-adjoint operators
and unitary operators are normal.

Gram-Schmidt Orthogonalisation

Given a complex inner product space and a basis v, vs,...v,, we would like
to produce and orthogonal/orthonormal basis. The procedure is essentially
identical to the earlier one for the real case.

We define f; = v; and put

<U17 vk>

vy for k> 2

This makes (f1,wy) = 0 for all k¥ > 2. We can then repeat the process with
Wa, ..., W,. This results in a basis (Exercise: Why is it a basis?) f1, fo,..., fa,
so that (f;, f;) =0 for ¢ < j. In other words, this is an orthogonal basis.

Defining e; = f;/(fi, fi)'/?, we see that this is an orthonormal or unitary basis.

In particular, this shows that any finite dimensional complex inner product space
has a orthonormal (unitary) basis.

Suppose f : V — C is a linear map and let f(e;) = a;. We then define the
vector wy = Z?:l a;e;; note that this sum does not make sense if V' is infinite
dimensional!

Now note that (e;, ws) = f(e;). This can be used to show that (v,w;) = f(v)
for all vectors v in V since both sides are linear maps on V' and they are equal
on the basis vectors. Moreover, if (v,w) = (v,w’) for all v, then it is easy to
show that w = w’. Thus, we have shown that any linear map f: V — C on a
finite dimensional complex inner product space is of the form v +— (v, w) for a
suitably chosen vector w in V.

Given an orthonormal basis eq,...,e, of a complex inner product space, let us

try to understand the inner product in terms of co-ordinates. Given vectors
n n

v=7> . vie;and w =) 1, wje;, we see that

n U1
(uw)zZviWi:(uT UTL)

i=1 vn

Note that this expression will not be correct if we use a basis which is not

orthonormal. Now if U is a unitary transformation, and we define u; = Ue;, the
U1,...,U, is another orthonormal basis. Writing u; = Z?:l u; ;€5 as a column



vector with entries u; j, and using the calculation of the inner-product above,
we see that

Ui, e Un,1 Ui,1 ‘e Ui,n 1 ... 0

Up1 --- Upn Up,1 --- Upn 0o ... 1

In other words, the matrix M associated with a unitary transformation in an

—t
orthonormal basis satisfies M M = 1, i.e. it is a unitary matrix. This is why an
orthonormal basis is sometimes also called a unitary basis.

Similarly, let us examine the matrix associated with a self-adjoint transformation
A. Writing Ae; = Y1 | a; je;, we have (since ey, ..., e, is orthonormal)

a;; = (Aej, e5) = (ei, Aej) = (Aej, e;) =5,

Thus the matrix associated with A is Hermitian, i.e. A = A

Now suppose that A : V — V is a linear transformation and for a vector w in V,
let us define the linear functional f = fa. : v — (Av,w). When V is a finite
dimensional complex inner product space, we have seen that there is a vector
wy so that f(v) = (v, wys). Thus, we get a set-theoretic map B : V — V defined
by w — wy. In other words, we have the identity (Av,w) = (v, Bw) for all v
and w in V. It is now an easy exercise to check that B is a linear map from the
complex vector space V to itself. This shows that any linear transformation on
a finite-dimensional complex inner-product space has an adjoint. As above, we
can easily show that if M is the matrix associated with A in an orthonormal
basis, then its adjoint is given by MM'. For that reason we sometimes use the
notation M* = Mt.

Note: The above statements converting from linear transformations to matrices
are only valid when one uses an orthonormal basis.

Orthogonal complements and Projections

Given a subspace W of a complex inner-product space V, we can define its
orthogonal complement

Wt = {v e V|{v,w) = 0Vw € W}

as the collection of all vectors v whose inner-product with any vector w in W is
0.

We note that the pairing restricted to W makes it into a complex inner product
space. Thus, if W is finite dimensional, then we can find an orthonormal basis
€l,...,em of W.



Given any vector v in V| we can define Pv by the formula

m

Py = Z(v,ei>ei

i=1
(Note the similarity with the formula used above for Gram-Schmidt orthogonali-
sation.) It is clear that P : V — V is a linear transformation.
We check that Pe; = e; for all ¢ and Puv lies in W for every v in V. It follows
that P2 = P. So P is an idempotent transformation V — V. Now,

m

(Pv,w) = Z(v,ei>ei,w> = Z (w, e;)e;,v) = (Pw,v) = (v, Pw)

=1 i=1

In other words, P is also self-adjoint, so it is a self-adjoint idempotent.

As we have seen in our study of idempotents P, we can write any vector v as
(1= P)v+ Puv, in other words V is decomposed in the image of P and the image
of (1 — P). Further, if P is self-adjoint, then

(1= P)v, Pw) = (P(1 = P)v,w) =(0,w) =0

Thus, if W is the image of P then the image of 1 — P is contained in W+. Thus,
V is the orthogonal sum of W and W+.

In summary, a self-adjoint idempotent P (also called an orthogonal projection)
leads to an orthogonal decomposition of the vector space into the image of P
and the image of 1 — P. If W is a finite dimensional subspace of V', then there
is an orthogonal idempotent P whose image is W.

Eigenvector for an operator

Given a linear transformation A : V' — V on a finite dimensional complex vector
space, we can choose a basis of V' and represent it as a matrix which we also
denote by A. The polynomial equation det(A — T - 1) = 0 has a solution T = A
over the field of complex numbers (by an application of the fundamental theorem
of algebra). It follows that det(A — A - 1) = 0. Thus, by the usual procedure for
solving a finite system of linear equations, we can find a non-zero vector v so
that (A — A - 1)v = 0; equivalently Av = Av. Thus, we have proved that a linear
transformation A : V' — V on a finite dimensional complex vector space has an
eigenvector.

Exercise: Consider the vector space V consisting of all polynomials in z~! which
can be considered as functions on the C — {0}. The operator D : V' — V sends
each such polynomial function to its derivative. In other words z=% s —kz=F~1L
Check that there is no eigenvector.

Thus, the finite dimensionality of V' is important. For infinite dimensional spaces
we will have to work harder to find eigenvectors!



Self-Adjoint Operators

Given a self-adjoint operator A : V' — V on a complex inner-product space and
an eigenvector v # 0, so that Av = Av for eigenvalue A\. We then have

M, v) = (A, v) = (Av,v) = (v, Av) = (v, W) = X (v, v)

Since v # 0, we have (v,v) # 0 so we get A = \. In other words, we have shown
that any eigenvalue of a self-adjoint operator is real.

If v is an eigenvector of A, let us consider the space
vt = {w € V|{v,w) = 0}
We check that if w is in v+, then
(v, Aw) = (Av,w) = ANv,w) =0

Hence, A sends v' to itself. It is obvious that v* is a complex inner-product
space and that the restriction of A to v is self-adjoint.

In particular, we see by induction on dimension that given a self-adjoint operator
A on a finite-dimensional complex inner product space V, there is an orthogonal
(by scaling we can make it orthonormal) basis of V' consisting of eigenvectors of
A. Moreover, the eigenvalues are real numbers.

Unitary Operators

Given a unitary operator U : V' — V on a complex inner-product space and an
eigen vector v # 0, so that Uv = \v for eigenvalue A. We then have

(v,v) = (Uv,Uv) = (\v, W) = |A]*(v,v)

Hence, we see that |A|?> = 1. In other words, A lies on the unit circle St in the
complex plane C. Thus any eigenvalue of a unitary matrix has absolute value 1.

If v is an eigenvector of A, let us consider the space
vt ={w e V|{v,w) = 0}
We check that if w is in v+, then
Ao, Uw) = (Uv,Uw) = (v,w) =0

Since A # 0 (it has absolute value 1), it follows that Uw also lies in v. In other
words, U takes v to itself. It is obvious, as before, that v is a complex inner-
product space and that the restriction of U to v is a unitary transformation.

In particular, we see by induction on dimension that give a self-adjoint operator U
on a finite-dimensional complex inner product space V, there is an orthonormal



basis of V consisting of eigenvectors of A. Moreover, the eigenvalues are of
absolute value 1.

The above results can be extended to normal operators. We will show that
a linear transformation of a finite dimensional inner product space to itself is
normal if and only if there is an orthonormal basis consisting of eigenvectors of
the transformation.
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