
Complex Numbers and Quaternions

We start by recalling the familiar properties of complex numbers.

Complex Numbers

There is a product structure on 2-vectors defined by

(v1, v2)� (w1, w2) = (v1w1 − v2w2, v1w2 + v2w1)

This makes the vector space of 2-vectors over real numbers into a ring which is
isomorphic to the ring C of complex numbers. The vector (1, 0) plays the role
of identity. We identify the real number a with the element (a, 0). The vector
i = (0, 1) has the property that i� i = (−1, 0) = −1. Moreover, for any complex
number v = (v1, v2) we define its conjugate as v = (v1,−v2) and its norm

Nm(v) = v � v = v2
1 + v2

2

For a non-zero vector v, Nm(v) 6= 0, thus v/Nm(v) is a multiplicative inverse of
v. Thus, non-zero complex numbers form a group denoted by C∗. Moreover, we
have v � w = w � v, and so

Nm(v � w) = v � w � w � v = Nm(v)Nm(w)

(Actually v � w = w � v!)

Thus complex numbers of norm 1 form a subgroup sometimes denoted by S1

since it is also the unit circle in the plane. We note that for a complex number
of norm 1, we have v = v−1 is the multiplicative inverse.

The map Lv : w 7→ v � w is a R linear map from the 2-dimensional plane to
itself. In the standard basis it is given by

w =
(
w1
w2

)
7→ Lv(w) =

(
v1 −v2
v2 v1

) (
w1
w2

)
It follows that if Nm(v) = 1, then Lv is a plane rotation. This identifies plane
rotations with group of unit complex numbers S1. More generally, writing
v = Nm(v)(v/Nm(v)) for a non-zero complex numbers identifies multiplication
by a complex number with a rotation followed by a scaling (which is the same in
all directions). In particular, this shows that multiplication by complex numbers
preserves angles; in other words, this is conformal.

With his invention of quaternions, Hamilton tried to do something similar for
rotations in 3 dimensions (and, as it turns out, in 4 dimensions as well).
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Quaternions

We use the symbol (v, w) to denote the “dot-product” of the 3-vectors v and
w and v × w to denote the “cross-product” of the 3-vectors v and w. We then
define the product

(a, v)� (b, w) = (ab− (v, w), aw + bv + v × w)

Here a and b are real numbers and v and w are 3-vectors. One checks that this
makes the 4-dimensional vector space consisting of pairs of the form (a, v) into a
ring with (1, 0) playing the role of multiplicative identity. We use H to denote
this ring and call it the ring of Quaternions. We identify elements of the form
(a, 0) with the corresponding real number a and note that they commute with
all other elements of H.

For a quaternion q = (a, v), we define its conjugate q = (a,−v). We also define
its norm

Nm(q) = q � q =
(
a2 + (v, v), 0

)
= a2 + (v, v)

which is a real number. Now, if q is a non-zero quaternion, then Nm(q) is
non-zero and so (1/Nm(q))q is a multiplicative inverse of q. Thus, non-zero
quaternions form a group which we denote by H∗.

Moreover, we have

(b, w)� (a, v) = (b,−w)� (a,−v) =
(ba− (w, v),−bv − aw + w × v) =

(ab− (v, w),−aw − bv + v × w) = (a, v)� (b, w)

Hence, for a pair p and q of quaternions, we have

Nm(p� q) = p� q � q � p = Nm(q)p� p = Nm(p)Nm(q)

where we used the fact that Nm(q) is a real number which commutes with p.

Thus, quaternions of norm 1 form a subgroup which we can denote by S3 since
it consists of the vectors of unit length in 4 dimensional space. We note that for
a quaternion of norm 1, we have q = q−1 is the multiplicative inverse.

So far, we see that the description of quaternions is very similar to the description
of complex numbers. We now turn to the examination of the relation between
quaternions and rotations.

Rotations

First of all, let us note that Nm((a, v)) = a2 + (v, v) = ((a, v), (a, v)) which is
the usual quadratic form on 4 dimensional space. If q1 and q2 are quaternions of
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norm 1, then, as seen above

Nm(q1 � (b, w)� q2) = Nm((b, w))

In other words, the linear transformation (b, w) 7→ q1�(b, w)�q2 is an orthogonal
transformation O(q1, q2).

Exercise: Check that the map (q1, q2) 7→ O(q1, q2) is a group homomorphism
from S3 × S3 to the group SO(4) of 4× 4 orthogonal transformations of deter-
minant 1.

One can show that this homomorphism is onto and has kernel {(1, 1), (−1,−1)}.

Let us define the trace of a quaternion q as q + q and denote it it as Tr(q). We
note that Tr((a.v)) = 2a. Secondly, we note that if q is a unit quaternion, then

Tr(q � (b, w)� q) = q � (b, w)� q + q � (b, w)� q =
q � (b, w)� q + q � (b, w)� q =

q � (b, w)q + q � (b, w)q = qTr((b, w))q = 2b

It follows that (b, w) 7→ q(b, w)q preserves the trace of (b, w). In particular,
it takes the 3-dimensional subspace of quaternions of the form (0, w) to itself
by an orthogonal transformation. The precise expression if q = (a, v) with
a2 + (v, v) = 1 is given below

(a, v)� (0, w)� (a,−v) = (0, (v, w)v + a2w + 2av × w + v × v × w)

Thus we get an orthogonal transformation

O(a, v) : w 7→ (v, w)v + a2w + 2av × w + v × v × w

Note that we can write (a, v) = (a, bu) where (u, u) = 1 and a2 + b2 = 1, which
can used to simplify and explicate the above expression. Secondly, we note that

Exercise: Show that v × w × v = (v, v)
(
w − (v,w)

(v,v) v
)
.

Using the above exercise, one can prove

Exercise: Show that O(a, v) is a rotation in the plane perpendicular to v by an
angle that is determined by a and (v, v).

Exercise: Show that (a, v) 7→ O(a, v) gives a group homomorphism from S3 to
the group SO(3) of 3 dimensional rotations.

One can show that this homomorphism is onto and has kernel {±1}.
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Special Unitary Matrices

We use the notation î = (0, e1), ĵ = (0, e2) and k̂ = (0, e3) and note the identities

î2 = ĵ2 = k̂2 = îĵk̂ = −1

In other words, we can write every quaternion q in the form

q = (q0, (q1, q2, q3)) = q0 + q1î+ q2ĵ + q3k̂ = (q0 + q1î) + ĵ(q2 − q3î)

Hence, we can think of a quaternion q as a pair of complex numbers (q0 +q1ι, q2−
q3ι). Written this way, the product becomes

(z1, z2)� (w1, w2) = (z1w1 − z2w2, z1w2 + z2w1)

Thus, multiplication by the quaternion (z1, z2) as given by

w =
(
w1
w2

)
7→ U(z)w =

(
z1 −z2
z2 z1

) (
w1
w2

)
We note that Nm(w) = |w1|2 + |w2|2 where |wi|2 = Nm(wi) when wi is a complex
number. When z is a quaternion of norm 1, multiplication by U(z) preserves
this “Hermitian dot-product” (a term that we will introduce in the next section).
Moreover, we see that detU(z) = |z1|2 + |z2|2 = 1. Thus, we have identified
unit quaternions with the group of 2 × 2 special unitary matrices which will
introduced shortly. This group is denoted as SU(2).

The matrices

U (̂i) =
(
ι 0
0 −ι

)
;U(ĵ) =

(
0 −1
1 0

)
;U(k̂) =

(
0 ι
ι 0

)
are sometimes called Pauli matrices in physics literature since they appear in
phyics literature for the first time in a paper of Pauli. (The same ideas in greater
generality had appeared in the work of Clifford decades earlier!)

4


	Complex Numbers and Quaternions
	Complex Numbers
	Quaternions
	Rotations
	Special Unitary Matrices


