
Orthogonal Transformations

In the previous section we studied orthogonal matrices G. These are n × n
matrices G = [v1, . . . , vn] of column matrices such that vi are mutually orthogonal
(i.e. vt

ivj = 0 for i 6= j) unit vectors (i.e. vt
ivi = 1); in other words, the

basis v1, . . . , vn is an orthonormal basis. It follows easily that GtG = 1 so
that Gt = G−1. Moreover, for any pair v, w of column vectors, we have
(Gw)t(Gv) = wt(GtG)v = wtv. Thus, we can geometrically describe them by
saying that the preserve lengths of vectors and angles between vectors.

From this description it is clear that a product of orthogonal matrix is an
orthogonal matrix. The inverse of an orthogonal matrix is orthogonal and the
identity matrix is orthogonal. In other words, orthogonal matrices form a group.

Conversely, suppose given a linear transformation v 7→ Gv which satisfies the
property that (Gw)t(Gv) = wtv for all vectors v and w. It follows that if
vi = Gei (where ei is the standard column vector) then the vectors vi form
an orthonormal basis. Thus G is given by an orthogonal matrix. Such a G is
called an orthogonal transformation. We will use the term orthogonal matrix
and orthogonal transformation interchangeably.

In this section, we will study orthogonal matrices (or the corresponding transfor-
mations) in various ways.

Products of Reflections

We work in a field of characteristic different from 2. In other words, 1/2 lies in
our field.

Given a non-zero (column) vector v, we define an orthogonal transformation
Rv which sends v to −v and is identity in the plane perpendicular to v; due to
similarity with reflection in a mirror, such a transformation is called a reflection
and is given by the formula

Rv(w) = w − 2vtw

vtv
v

We note that Rv ·Rv = 1. Given two linearly independent vectors v and w such
that vtv = wtw we note that (v − w)t(v + w) = 0. We can form the reflection
Rv−w. We see that Rv−w(v+w) = v+w. On the other hand Rv−w(v−w) = w−v.
It follows easily that Rv−w(v) = w and Rv−w(w) = v.

Given an orthogonal matrix G. Suppose that G is different from identity,
then there is a vector v for which w = Gv 6= v. Note that wtw = vtv by
the orthogonality of G. We can then form the orthogonal transformation
G′ = Rv−wG. From the above calculation, we see that G′v = v. We can
now restrict G′ to the vector space v⊥ = {w|wtv = 0} and repeat this process.
It follows that any orthogonal n× n matrix can be written as a product of at
most n reflections.
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Rotations

Given v and w two linearly independent vectors consider the orthgonal transfor-
mation RvRw. If we restrict our attention to < v, w >⊥= {u|utv = utw = 0},
then RvRw acts as identity. Hence, we only need to understand its action on
the plane spanned by v and w.

Exercise: Calculate the matrix of the linear transformation RvRw on the plane
< v, w > spanned by v and w in a suitable orthonormal basis, and show that it

has the form
(

a b
−b a

)
where a2 + b2 = 1 and (a, b) can be calculated in terms

of vtw.

In other words, this is a plane rotation. Combining this with the arguments
given above, we can show that any orthogonal matrix is a product of at most
n/2 rotations and possibly one reflection. (We can combine the reflections in
adjacent pairs to give rotations.)

However, there is nothing “canonical” about such an expression. Moreover, the
rotations are not in planes perpendicular to each other.

Canonical Form of an Orthogonal matrix

Given an orthogonal matrix G. We can collect all eigenvectors of G with
eigenvalue ±1 into a subspace V and restrict our attention to the subspace
W = V ⊥. Hence, we can assume that ±1 are not eigenvalues of G.

The Cayley transform of G is defined as H = (G+1)(G−1)−1. We see easily that
H is skew-symmetric and invertible, so that it does not have 0 as an eigenvalue.

Given a skew-symmetric matrix H with the additional assumption that 0 is not

an eigen value of H. Consider the matrix A =
(

0 H
−H 0

)
. We see that A is a

symmetric matrix and so, as seen above, it has an eigenvector (p, q)t. It follows
that Hp = aq and Hq = −ap for a suitable real number a. Since 0 is not an
eigenvalue, we see that p and q are linearly independent.

One then checks that Gp = bp+cq and Gq = −cp+bq where b = (1−a2)/(1+a2)
and c = 2a/(1 + a2 so that b2 + c2 = 1. In other words, G is a rotation restricted
to the plane < p, q > spanned by p and q.

Repeating the above with the space perpendicular to the plane < p, q > allows
us to write G in block diagonal form with blocks consisting of 1’s, −1’s and
planar rotations. (Note that this proof did not use the fundamental theorem of
algebra.) These rotations are on planes that given an orthogonal decomposition
of W .

Over the field of complex numbers p +
√
−1q and p−

√
−1q can be seen to be

eigenvectors of G with eigenvalues b +
√
−1c and b−

√
−1c respectively. Doing
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this for every plane as above shows that G is diagonalisable over the field of
complex numbers. In particular, this means that the minimal polynomial of G
has distinct roots.
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