Orthogonal Matrices

1. What are some values of b and c that will make the following an orthogonal matrix?

$$
G=\left(\begin{array}{cc}
3 / 5 & b \\
c & 3 / 5
\end{array}\right)
$$

2. For the above matrix (after substituting b and c) calculate the matrix $H=(G-1)(G+$ $1)^{-1}$. Check that it is skew-symmetric.
3. Let $v=e_{1}+e_{2}+e 3$ be the column 3 -vector all of whose entries are 1 . Write down the matrix of the associated reflection R_{v} defined as the linear transformation

$$
R_{v}(w)=w-2 \frac{w^{t} v}{v^{t} v} v
$$

4. More generally, if v is any column vector, then show that the matrix for R_{v} is given by

$$
R_{v}=1-\frac{2}{v \cdot v} v v^{t}
$$

(Note that $v v^{t}$ is a 3×3 matrix!)
5. Using the above formula, write $A=R_{v} R_{u}$ in a form where it is "obvious" that A is identity on the vectors perpendicular to both u and v. Calculate the 2×2 matrix for A on the plane spanned by u and v (assume that u and v are linearly independent). Is it an orthogonal matrix? If not, why not?
6. For the quaternion $q=(1,(1,1,1)) / 2$ carry out the following:
(a) Check that the norm of q is 1 .
(b) Write down the 4×4 matrix A of the linear transformation $(b, w) \mapsto q \odot(b, w)$.
(c) Write down the 3×3 matrix B of the linear transformation $(0, w) \mapsto q \odot(0, w) \odot \bar{q}$.
(d) Are A and B orthogonal matrices?
(e) Describe the matrix B as a rotation. What is the angle in terms of sine and cosine?
(f) Can you describe the matrix A as a rotation (is there any fixed "axis")?
(g) What is the canonical form of B over complex numbers?
7. Fix a 3 -vector v. Write the matrix for the linear transformation $w \mapsto v \times w$.
8. Repeat the above calculations for a general unit quaternion $q=(a, v)$ with $a^{2}+v \cdot v=1$.

