Symmetric Bilinear Forms and Quadratic forms

1. Write down the quadratic form associated with the symmetric bilinear form $A(v, w)=$ $v^{t} A w$, where A is the 3×3 matrix

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

2. Write down the symmetric 3×3 matrix A associated with the quadratic form $Q(x, y, z)$ given by

$$
Q(x, y, z)=x y+y z+z^{2}
$$

3. Use completion of the square to write each quadratic form below in diagonal form.
(a) $x^{2}+2 x y+2 x z+2 y^{2}+3 y z+3 z^{2}$
(b) $x^{2}+2 x y+2 x z+y^{2}+y z+2 z^{2}$
4. In each of the examples in the question above write the associated symmetric matrix A that gives the bilinear form. Moreover, write the change of co-ordinates matrix S so that $S^{t} A S$ is in diagonal form.
5. Find the rank and signature of the following symmetric matrix

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

6. Let v_{1}, v_{2}, v_{3} be the column vectors of the matrix below. Apply Gram-Schmidt orthogonalisation to find a basis of orthogonal vectors of the form $v_{1}, v_{2}+a v_{1}, v_{3}+b v_{1}+c v_{2}$.

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

7. Given a symmetric matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. Write down the conditions on the variables a, b and c that will make this a positive definite matrix.
8. (Starred) Find a similar condition for the 6 entries of a symmetric 3×3 matrix.
9. Given a symmetric matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.
(a) Find a vector v (with real entries) with $v \cdot v=1$ for which the quadratic form takes a maximum value.
(b) Using the above vector write an orthonormal matrix S so that $S^{-1} A S$ is diagonal.
10. (Starred) Given a symmetric matrix A over \mathbb{Q}, show that its minimal polynomial has distinct roots.
11. (Starred) If a symmetric matrix A is also nilpotent, then show that A is the 0 matrix.
