Solutions to Assignment 9

1. Show that the only irreducible elements in the ring of integers are of the form $\pm p$ where p is a prime number.

Solution: If an integer n is irreducible, then it cannot be written in the form $n=a \cdot b$ unles one of a or b is a unit. The only units in the ring of integers are ± 1. So, if we assume than n is positive, then this is the same as the condition that n is prime.
2. Show that the elements of the form $T-a$ in the ring $\mathbb{Q}[T]$ are irreducible. (This is true with any field.)

Solution: If we write $T-a=P(T) Q(T)$, then sum of the degrees of P and Q is 1 . This means that one of the degrees is 0 . In that case, it is a constant and ths a unit.
3. If p is an irreducible element of R and p lies in the ideal $q \cdot R$, then show that either q is a unit (so that $q \cdot R=R$) or $q=p \cdot u$ where u is a unit.

Solution: We have $p=q \cdot a$. By the definition of irreducibility, either q or a is a unit. If q is not a unit then a is a unit and $q=p \cdot u$ where u is such that $a \cdot u=1$.
4. Check that P is a prime ideal if and only if R / P is a domain.

Solution: If R / P is a domain, then it has no non-zero zero divisors. In other words, if a and b are in R so that $a \cdot b$ is 0 in R / P, then either a is 0 in R / P or b is 0 in R / P. This is the same as saying that either a is in P or b is in P. The converse condition is similar.
5. Check that $(1+\sqrt{-5})(1-\sqrt{-5})=6=2 \cdot 3$. Show that 2 does not divide $1+\sqrt{-5}$ or $1-\sqrt{-5}$ in the ring R.

Solution: The ring R is contained in the field of complex numbers. So every element can be uniquely expressed in the form $a+b \sqrt{-5}$ with a and b in the field of real numbers. In particular, $1 / 2 \pm(1 / 2) \sqrt{-5}$ is not in the ring R.
6. Check that $1+\sqrt{-5}=\alpha \cdot \beta$ with α and β in R is only possible if either α or β is ± 1.

Solution: We write $\alpha=a+b \sqrt{-5}$ and $\beta=c+d \sqrt{-5}$. Calculating the modulus of the complex numbers we have

$$
1+5=6=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)
$$

Now the expression $p^{2}+5 q^{2}$ takes the values $0,1,6, \ldots$ when p and q are integers. This, the only way for the above equation to be true is that either $a^{2}+5 b^{2}$ or $c^{2}+5 d^{2}$ is 1. This proves that either α or β is ± 1.
7. Conclude that $1+\sqrt{-5}$ is irreducible but not prime.

Solution: From the above exercise we see that $1+\sqrt{-5}$ is irreducible. However, as seen in the exercise before that we have $2 \cdot 3=6$ lies in $(1+\sqrt{-5}) \cdot R$, but neither 2 nor 3 lies in this ideal.
8. Show that if P is a maximal ideal then R / P is a field.

Solution: If a is not in P, then $a \cdot R+P=R$ by the maximality of P. This means that we have an equation of the form $a \cdot b+p=1$ where p lies in the ideal P. Thus $a \cdot b=1$ in R / P and so a is a unit in R / P.
9. Conversely, if I is an ideal in a commutative ring R and R / I is a field, then show that I is a maximal ideal.

Solution: Since R / I is a field $1 \neq 0$ in it, so 1 does not lie in I and so I is a proper ideal.
If a is any element of R which is not in I, then there is an element b in R so that $a \cdot b=1$ in R / I. This means that $a \cdot b-1=c$ lies in I. Hence 1 lies in $a \cdot R+I$ and so $a \cdot R+I=R$ (since it is closed under multiplication by R). This shows that I is a maximal ideal.
10. If u is a unit in a ring R and $u=a \cdot b$, then show that a and b are units in R.

Solution: Let v be in R so that $u \cdot v=1=v \cdot u$. We then have $a \cdot(b \cdot v)=1$ and $(v \cdot a) \cdot b=1$. This shows that a and b are units.
11. If a prime q is a multiple of a prime p in a domain R then show that $q=p \cdot u$ where u is a unit. (Hint: Look at the proof that primes are irreducible.)

Solution: If q lies in the ideal $p \cdot R$, then $q=p \cdot u$ for some u in R. This means that $p \cdot u$ lies in $q \cdot R$ which is a prime ideal. Hence, either p lies in $q \cdot R$ or u lies in $q \cdot R$. In the first case $p=q \cdot v$ so $p=p \cdot u \cdot v$. Since a prime is non-zero, we can cancel p to get that u is a unit. If u lies in $q \cdot R$, then $u=q \cdot b$ so $u=p \cdot b \cdot u$. Since q is a prime it is non-zero; this means u is non-zero since q is a multiple of u. Hence we can cancel it to get $p \cdot b=1$. This contradicts the fact the p is a prime and hence a non-unit.
12. If a is an element of a PID R which is not a multiple of a prime p, then show that $a \cdot R+p \cdot R=R$. (Hint: a gives a non-zero element of R / p which is a field.)

Solution: If the ideal $a \cdot R+p \cdot R$ is a proper ideal in R, then it is contained in a maximal ideal I of R. Since R is a PID, $I=q \cdot R$ for some q. Since maximal ideals are prime, q is a prime. Thus the prime p is a multiple of the prime q and it follows that q is a multiple of q by the previous exercise. It follows that a is a multiple of p contradicting the hypothesis that a is not a multiple of p. Hence it follows that $a \cdot R+p \cdot R=R$.
13. Find polynomials $A(T)$ and $B(T)$ so that $A(T) \cdot T+B(T) \cdot\left(T^{2}-1\right)=1$.

Solution: We can take $A(T)=T$ and $B(T)=-1$. We then have

$$
T \cdot T-1 \cdot\left(T^{2}-1\right)=1
$$

14. Use the above to find a polynomial $C(T)$ which is divisible by T so that its reduction modulo $T^{2}-1$ is equivalent to $T+1$.

Solution: Multiplying the above equation by $T+1$, we have

$$
T \cdot T \cdot(T+1)-\left(T^{2}-1\right) \cdot(T+1)=(T+1)
$$

Thus, we have $C(T)=T^{3}+T^{2}$
15. Find an integer n so that it is 7 modulo 8 and 8 modulo 9 .

Solution: We have the equation $9-8=1$. Thus, $7 \cdot 9=63$ is 7 modulo 8 and 0 modulo 9 . Now 8 is 8 modulo 9 and 0 modulo 8 . So $63+8=71$ is the solution to the problem.
16. Given a and b distinct rational numbers, find a matrix S (in terms of a and b) so that

$$
S^{-1} \cdot\left(\begin{array}{ll}
a & 1 \\
0 & b
\end{array}\right) \cdot S=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

Solution: We need to find column vectors v and w so that

$$
\left(\begin{array}{ll}
a & 1 \\
0 & b
\end{array}\right) \cdot v=a \cdot v
$$

and

$$
\left(\begin{array}{ll}
a & 1 \\
0 & b
\end{array}\right) \cdot w=b \cdot w
$$

Equivalently, we want

$$
\left(\begin{array}{cc}
0 & 1 \\
0 & b-a
\end{array}\right) \cdot v=0
$$

and

$$
\left(\begin{array}{cc}
a-b & 1 \\
0 & 0
\end{array}\right) \cdot w=0
$$

We check easily that

$$
v=\binom{1}{0} \text { and } w=\binom{1}{b-a}
$$

Satisfy these equations. Hence

$$
S=\left(\begin{array}{cc}
1 & 1 \\
0 & b-a
\end{array}\right)
$$

gives a solution to the problem
17. Given a and $b \neq 0$ rational numbers, find a matrix S (in terms of a and b) so that

$$
S \cdot\left(\begin{array}{cc}
a-b & b \\
-b & a+b
\end{array}\right) \cdot S^{-1}=\left(\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right)
$$

Solution: As above we need to find column vectors v and w so that

$$
\left(\begin{array}{cc}
a-b & b \\
-b & a+b
\end{array}\right) \cdot v=a \cdot v
$$

and

$$
\left(\begin{array}{cc}
a-b & b \\
-b & a+b
\end{array}\right) \cdot w=v+a \cdot w
$$

We re-write the first equation as

$$
\left(\begin{array}{ll}
-b & b \\
-b & b
\end{array}\right) \cdot v=0
$$

which has the solution $v=\binom{1}{1}$. We can then re-write the second equation as

$$
\left(\begin{array}{ll}
-b & b \\
-b & b
\end{array}\right) \cdot w\binom{1}{1}
$$

This has the solution

$$
w=\binom{-\frac{1}{2 b}}{\frac{1}{2 b}}
$$

Thus, the required matrix is

$$
S=\left(\begin{array}{cc}
1 & -\frac{1}{2 b} \\
1 & \frac{1}{2 b}
\end{array}\right) \cdot v=0
$$

18. Show that $T^{2}+1$ is irreducible in $\mathbb{Q}[T]$

Solution: If $T^{2}+1$ has a factorisation, then at least one factor is linear. it follows that we must have a rational number so that its square is -1 . However, the square of any rational number is positive. Hence, this is not possible.
19. Show that $T^{3}-T+1$ is irreducible.

Solution: If $P(T)=T^{3}-T+1$ has a factorisation, then at least one factor is linear. If p / q is a root then we have $p^{3}-p q^{2}+q^{3}=0$. So any prime that divides q also divides p. It follows that $p / q=n$ is an integers. Now $P^{\prime}(T)=3 T^{2}-1$ is positive for $T \geq 1$ and $P(1)=1>0$. It follows that $P(T)$ is positive for $T \geq 1$. Similarly, $P^{\prime}(T)$
is positive for $T \leq-1$ and $P(-1)=-1<0$. Thus $P(T)$ is negative for $T \leq-1$. Thus, its only integer can be at 0 . However $P(0)=1$ is non-zero. Thus $P(T)$ has no integer 0 and so it is irreducible.
20. Check that the Liebnitz rule is satisfied by the formal derivative.

$$
(P(T) \cdot Q(T))^{\prime}=P^{\prime}(T) Q(T)+P(T) Q^{\prime}(T)
$$

Solution: We only need to check this for $P(T)=T^{a}$ and $Q(T)=T^{b}$ in which case it is trivial.
21. Check that the following identity holds:

$$
P^{\prime}(T)=\sum_{i=1}^{n} \frac{\left(T-z_{1}\right) \cdots\left(T-z_{n}\right)}{\left(T-z_{i}\right)}
$$

Solution: This follows from the Liebniz rule.
22. (Starred) Show that the converse is also true. If $P(T)$ and $P^{\prime}(T)$ have a common factor, then there is a repeated root.

Solution:

23. Find an integer n so that $n^{2}+1$ is divisible by $125\left(=5^{3}\right)$.

Solution: We have $2^{2}+1=5$ is divisible by 5 . So we look for $a=2+5 k$ so that $a^{2}+1$ is divisible by 25 . We see that $7=2+5$ satisfies this property. Next we look for $b=7+25 k$ so that $b^{2}+1$ is divisible by 125 . We note that

$$
(7+25 k)^{2}+1=49+1+2 \cdot 7 \cdot 25 k \quad(\bmod 125)=25(2+14 k)
$$

We need $2+14 k$ to be divible by 5 and that works for $k=2$. Thus we see that $n=57$ solves the problem.
24. Find a polynomial $P(T)$ so that $P(T)^{3}-1$ is divisible by $\left(T^{3}-1\right)^{2}$.

Solution: We note that $P_{0}(T)$ has the property that $P_{0}(T)^{3}-1$ is divisible by $\left(T^{3}-1\right)$. So we look for $P(T)=T+A(T)\left(T^{3}-1\right)$. We get $P(T)^{3}-1=T^{3}-1+3 \cdot T^{2} \cdot A(T)\left(T^{3}-1\right) \quad\left(\bmod \left(T^{3}-1\right)^{2}\right)=\left(T^{3}-1\right)\left(1+3 T^{2} A(T)\right)$

So we need to find $A(T)$ so that $1+3 T^{2} A(T)$ is divisible by $T^{3}-1$. Clearly $A(T)=$ $-(1 / 3) T$ works. Thus we have $P(T)=T-(1 / 3) T\left(T^{3}-1\right)$.

