Solutions to Assignment 8

1. Given a module M over $\mathbb{Q}[T]$, we can also think of it as a module (vector space) over \mathbb{Q} (with something extra!). Check that the endomorphism $m \mapsto T \cdot m$ on M is a linear transformation of the vector space M over \mathbb{Q}.

Solution: Since $T \cdot a=a \cdot T$ in the ring $\mathbb{Q}[T]$, it follows that

$$
T \cdot(a \cdot m)=(T \cdot a) \cdot m=(a \cdot T) \cdot m=a \cdot(T \cdot m)
$$

This proves that multiplication by T commutes with multiplication by rational numbers. This is what is needed to make this a linear transformation since the additive property is anyway ensured by the fact that multiplication by T is a group homomorphism $M \rightarrow M$.
2. Given a vector space V over \mathbb{Q} and a linear transformation $A: V \rightarrow V$, we can define $f: \mathbb{Q}[T] \rightarrow \operatorname{End}(V)$ by $f(P(T))(v)=P(A)(v)$ where

$$
P(A)(v)=a_{0} \cdot v+a_{1} \cdot A(v)+\cdots+a_{n} \cdot A^{n}(v) \text { when } P(T)=a_{0}+a_{1} T+\cdots+a_{n} T^{n}
$$

Check that f is a ring homomorphism.

Solution: A homomorphism $\mathbb{Q}[T] \rightarrow \operatorname{End}(V)$ is determined by what it does to T since the action of \mathbb{Q} is already determined. We are given that T acts on V by the linear transformation $A: V \rightarrow V$ which (by definition of a linear transformation) commutes with multiplication by rational numbers.
3. Show that the only ideals in a field F are F and $\{0\}$. and that a field is a domain. Conclude that a field is a PID.

Solution: Any non-zero element a in F is a unit so that $a \cdot F=F$. Since F is a domain and every ideal is principal, it is a principal ideal doamin.
4. If D is a matrix in normal form over a field F, show that the diagonal entries of D must be of a certain number of non-zero entries followed by 0 's.

Solution: Since every non-zero element is a unit, the non-zero elements divide each other and 0 .
5. Use the above exercise to show that any finitely generated vector space has a basis.

Solution: We know from the structure for modules over a PID that a finitely generated module over a PID has the form $R / d_{1} \times \cdots \times R / d_{n}$ where d_{i} are the principal divisors. As shown above these d_{i} are either units or 0 , it follows that the module is free.
6. Show that $\mathbb{Q}[T] /(P(T) \mathbb{Q}[T])$ is a vector space over \mathbb{Q} with basis given by $1, T, \ldots, T^{d-1}$ where d is the degree of P.

Solution: Suppose $P(T)=T^{d}+a_{d-1} T^{d-1}+\cdots+a_{0}$. Since $P(T) T^{k}=0$ in $\mathbb{Q}[T] / P(T)$ for all $k \geq 0$, we get the identities

$$
T^{d+k}=-a_{0} T^{k}-a_{1} T^{k+1}-\cdots-a_{d-1} T^{k+d-1}
$$

This means that all powers of T higher than $T^{d=1}$ can be written in terms of $1, T, \ldots, T^{d-1}$. This shows that these elements generate the vector space. Since there is no polynomial of degree less than d in $P(T) \cdot \mathbb{Q}[T]$, it follows that these elements are linearly independent as well.
7. In the above basis, check the matrix of the operation multiplication by T is given by

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
-a_{0} & -a_{1} & a_{2} & \cdots & -a_{d-1}
\end{array}\right)
$$

where $P(T)=T^{d}+a_{d-1} T^{d-1}+\cdots+a_{0}$.

Solution: We have the identities

$$
\begin{aligned}
T \cdot 1 & =0 \cdot 1+1 \cdot T+0 \cdot T^{2}+\cdots+0 \cdot T^{d-1} \\
T \cdot T & =0 \cdot 1+0 \cdot T+1 \cdot T^{2}+\cdots+0 \cdot T^{d-1} \\
T \cdot T^{d-1} & =-a_{0} \cdot 1-a_{1} \cdot T^{1}-\cdots-a_{d-1} T^{d-1}
\end{aligned}
$$

This gives the matrix expression.
8. Check that for any polynomial $Q(T)$, the operation multiplication by $Q(T)$ on $\mathbb{Q}[T] / P(T)$ in the basis $1, T, \ldots, T^{d-1}$ is given by the matrix $Q(A)$ (see exercise 2 to see how $Q(A)$ is defined.)

Solution: The action of $\mathbb{Q}[T]$ on this vector space is determined by the action of multiplication by T; this is given by by the matrix A as seen above. The resulting action of a matrix $Q(T)$ is then given by $Q(A)$.
9. Check that $P(A)=0$. (Hint: Use the previous exercise.)

Solution: This follows immediately from the previous exercise.
10. As $\mathbb{Q}[T] / P(T)$ is a module over $\mathbb{Q}[T]$, we have the ring homomorphism

$$
\mathbb{Q}[T] \rightarrow \operatorname{End}(\mathbb{Q}[T] / P(T)
$$

Check that the kernel of this ring homomorphism is precisely $P(T) \cdot \mathbb{Q}[T]$.

Solution: This too follows from the previous exercise.
11. Choose a square matrix A of size 3 (or 4) and carry out the row and column reductions on $T-A$ to calculate the basis in which it has the block form. Using this calculate its minimal polynomial and characteristic polynomial.

Solution: One such example was done in the previous solution set.
12. Given a 4×4 matrix A. In the normal form of $T-A$ what are the possible degrees of the diagonal entries (assume that we write them so that $P_{1}(T)\left|P_{2}(T)\right| P_{3}(T) \mid P_{4}(T)$. Using this find the possible sizes of the block form of A.

Solution: Let the degree of $P_{i}(T)$ be d_{i}. We then have $\sum_{i} d_{i}=4$ and $d_{i} \leq d_{i+1}$. Thus, the possiblities for $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ are

$$
(0,0,0,4) ;(0,0,1,3) ;(0,0,2,2) ;(0,1,1,2) ;(1,1,1,1)
$$

In order to understand the block description we can use the above except that we can ignore the degree 0 terms. So the block sizes possible are (a) a single block of size 4, (b) a block of size 1 and a block of size 3, (c) two blocks of size 2, (d) 2 blocks of size 1 and a block of size 2 , (e) 4 blocks of size 1 .

