Solutions to Assignment 7

1. Show that \mathbb{Z} / n (for any n) is a principal ideal ring.

Solution: An ideal in \mathbb{Z} / n is of the forme I / n where I is an ideal in \mathbb{Z} such that $I \supset n \cdot \mathbb{Z}$. Since such an ideal is of the form $I=a \cdot \mathbb{Z}$ where a divides n. Thus I / n is generated by a.
2. Show that \mathbb{Z} / n is a domain only if n is a prime.

Solution: If $n=a \cdot b$ where a and b are positive integers, then $a \cdot b=0$ in \mathbb{Z} / n. Moreover, a and b are less than n, so we have zero-divisors in \mathbb{Z} / n. Conversely, if $a \cdot b=0$ in \mathbb{Z} / n, then we have an expression $a \cdot b=n \cdot k$ for a multiple of n. Then n cannot be prime.
3. Given an abelian group M and a ring R and a ring homomorphism $\phi: R \rightarrow \operatorname{End}(M)$. Given an element a in R and an element m in M, we use the notation $a \cdot m$ for the result $\phi(a)(m)$ of applying the image of a to the element m.
(a) Use the fact that $\phi(a)$ is an endomorphism of M to show that if m^{\prime} is another element of M, then $a \cdot\left(m+m^{\prime}\right)=a \cdot m+a \cdot m^{\prime}$.

Solution: We have

$$
a \cdot\left(m+m^{\prime}\right)=\phi(a)\left(m+m^{\prime}\right)=\phi(a)(m)+\phi(a)\left(m^{\prime}\right)=a \cdot m+a \cdot m^{\prime}
$$

(b) Use the fact that ϕ preserves addition and the rule of addition of endomorphisms to show that $(a+b) \cdot m=a \cdot m+b \cdot m$ when b is another element of R.

Solution: We have

$$
(a+b) \cdot m=\phi(a+b)(m)=(\phi(a)+\phi(b))(m)(\phi(a)(m)+\phi(b)(m))
$$

(c) Use the rule of composition of endomorphisms and the fact that ϕ preserves multiplication to show that $a \cdot(b \cdot m)=(a \cdot b) \cdot m$.

Solution: We have

$$
(a \cdot b) \cdot m=\phi(a \cdot b)(m)=(\phi(a) \circ \phi(b))(m) \phi(a)(\phi(b)(m))=a \cdot(b \cdot m)
$$

(d) Use the fact that ϕ preserves multiplicative identity to show that $1 \cdot m=m$.

Solution: We have

$$
1 \cdot m=(\phi(1))(m)=\left(1_{M}\right)(m)=m
$$

Where $1_{M}: M \rightarrow M$ denotes the identity map.
(e) Use the fact that ϕ preserves additive identity to show that $0 \cdot m=0$ where the latter 0 is the additive identity in M.

Solution: We have

$$
0 \cdot m=(\phi(0))(m)=\left(0_{M}\right)(m)=0
$$

Where $0_{M}: M \rightarrow M$ denotes the map which sends everythin to 0 .
4. Given an operation $a \cdot m$ of elements a of a ring R on elements m of abelian group M satisfying the identities.

- $a \cdot\left(m+m^{\prime}\right)=a \cdot m+a \cdot m^{\prime}$
- $(a+b) \cdot m=a \cdot m+b \cdot m$
- $a \cdot(b \cdot m)=(a \cdot b) \cdot m$
- $1 \cdot m=m$ and $0 \cdot m=0$

Check that $\phi(a)(m)=a \cdot m$ defines a ring homomorphism $R \rightarrow \operatorname{End}(M)$.

Solution: The first identity shows that $\phi(a): M \rightarrow M$ is a group homomorphism, thus we get a map $\phi: R \rightarrow \operatorname{End}(M)$.
The second identity shows that $\phi: R \rightarrow \operatorname{End}(M)$ preserves addition. The third identity shows that $\phi: R \rightarrow \operatorname{End}(M)$ preserves multiplication. The fourth and fifth identities show that $\phi: R \rightarrow \operatorname{End}(M)$ preserves multiplicative and additive identities.
5. Show that $I \subset R$ is a submodule of R (as a module over R) if and only if I is an ideal of R.

Solution: To be a submodule, I must be a subgroup, which means it is closed under addition. In addition, we must have $\phi(a)(I) \subset I$ which is the same as saying $a \cdot I \subset I$. Note that $(-1) \cdot b=-b$ and so the additive inverse of an element b in I automatically lies in an ideal I.
6. Define an operation of a ring R on the abelian group R^{n} by $a \cdot\left(a_{1}, \ldots, a_{n}\right)=\left(a \cdot a_{1}, \ldots, a\right.$. $\left.a_{n}\right)$. Check that this operation makes R^{n} into a module over R.

Solution: We check that

$$
\begin{gathered}
a \cdot\left(\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)\right)=a \cdot\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)= \\
\left(a \cdot\left(a_{1}+b_{1}\right), \ldots, a \cdot\left(a_{n}+b_{n}\right)\right)= \\
\left(a \cdot a_{1}+a \cdot b_{1}, \ldots, a \cdot a_{n}+a \cdot b_{n}\right)= \\
\left(a \cdot a_{1}, \ldots, a \cdot a_{n}\right)+\left(a \cdot b_{1}, \ldots, a \cdot b_{n}\right)= \\
a \cdot\left(a_{1}, \ldots, a_{n}\right)+a \cdot\left(b_{1}, \ldots, b_{n}\right)
\end{gathered}
$$

Other identities above can be checked in a similar way.
7. Use the natural multiplication by integers to make \mathbb{Z} / n a module over \mathbb{Z}. Check that this is not a free module unless $n=0$!

Solution: Given any element a in \mathbb{Z} / n the map $k \mapsto k \cdot a$ from $\mathbb{Z} \rightarrow \mathbb{Z} / n$ contains $n \mathbb{Z}$. So the map is not one-to-one unless $n=0$.
8. Given a ring homomorphism $f: R \rightarrow S$, this makes S a module over R by defining $a \cdot b$ as $f(a) \cdot b$ for a in R and b in S.

Solution: We have already seen that $\phi: S \rightarrow \operatorname{End}(S)$ given by $\phi(s)(t)=s \cdot t$ is a ring homomorphism. Now combined with the ring homomorphism $R \rightarrow S$, this gives a ring homomorphism $R \rightarrow \operatorname{End}(S)$ as required.
9. Show that the endomorphisms $\operatorname{End}(\mathbb{Q})$ of the abelian group of rational numbers is (as a ring) isomorphic to \mathbb{Q}. (Hint: Identify an endomorphism by what it does to the element 1.)

Solution: Given an endomorphism $\mathbb{Q} \rightarrow \mathbb{Q}$, assume that it sends 1 to t. It is clear that it sends $2=1+1$ to $t+t=2 t$. Similarly, it sends a positive integer n to $n t$. Now, we can write $1=1 / 2+1 / 2$ so if $1 / 2$ goes to s then $t=s+s=2 s$. This means that $s=t / 2$. Similarly it follows that $1 / m$ goes to t / m. It then follows that n / m goes to $(n / m) t$. Thus any endomorphism is of the for $n / m \mapsto(n / m) t$ for a fixed rational number t.
10. Show that any finitely generated subgroup of the additive group of rational numbers is of the form $\mathbb{Z} \cdot(p / q)$ (i. e. the collection of all multiples of $p / q)$ for some rational number p / q.

Solution: Since the subgroup is finitely generated, it is generated by finitely many fractions p_{i} / q_{i}. If we take q to be the product of the q_{i} 's, it follows that this group is contained in the subgroup $(1 / q) \cdot \mathbb{Z}$. Under the isomorphism $\mathbb{Z} \rightarrow(1 / q) \cdot \mathbb{Z}$ (given by $n \mapsto n / q)$, this corresponds to a subgroup of \mathbb{Z} on the left-hand side. We have already seen that such a subgroup has the form $p \cdot \mathbb{Z}$. Hence, the given subgroup is of the form $(p / q) \cdot \mathbb{Z}$.
11. (Five Stars!) Show that there is a proper subgroup of the rational numbers which is not of the form $\mathbb{Z} \cdot(p / q)$ for some rational number p / q.

Solution: Consider the subgroup of \mathbb{Q} which consists of fractions of the form $p / 2^{k}$ for all integers p and k. We see this is not a subgroup of the previous form and is not finitely generated.
12. If $f: N \rightarrow M$ is a module homomorphism, check that its image is a submodule.

Solution: Since $f\left(n+n^{\prime}\right)=f(n)+f\left(n^{\prime}\right)$ we see that the image is a subgroup. Since $f(a \cdot n)=a \cdot f(n)$ we see that the image is closed uder multiplication by elements of R.
13. For a module homomorphism $f: N \rightarrow M$, let $K=\{n \mid f(n)=0\}$ denote the kernel in the sense of (abelian) groups. Show that it is a submodule of N.

Solution: The kernel of a group homomorphism is a subgroup. We also have $f(a$. $n)=a \cdot f(n)$. So, if $f(n)=0$, then $f(a \cdot n)=0$.
14. If $f: N \rightarrow M$ is a homomorphism which is both 1-1 and onto then check that its inverse $g: M \rightarrow N$ is a homomorphism.

Solution: The inverse is a group homomorphism. We only need to check that $g(a \cdot m)=a \cdot g(m)$. Now, if $n=g(m)$, then $m=f(n)$. So substituting this the identity becomes $g(a \cdot m)=a \cdot n$. Applying f to both sides we have $a \cdot m=f(a \cdot n)=a \cdot f(n)$. In that case, we see that the identity holds after applying f. Since f is one-to-one, the identity already holds before applying f !
15. Check that when R is a field, then N and M are vector spaces over R and a module homomorphism $N \rightarrow M$ is the same as a linear transformation of vector spaces.

Solution: The above identites for a module structure and module homomorphism are the same as those for a vector space and linear transformation.
16. Given any element m in M, show that $s \mapsto s \cdot m$ defines a module homomorphism $R \rightarrow M$ where R is considered as a module over itself in a natural way.

Solution: We note that $(s+t) \mapsto(s+t) \cdot m=s \cdot m+t \cdot m$. This shows that this is a group homomorphism. Secondly $s \cdot(t \cdot m)=(s \cdot t) \cdot m$ so it preserves mutliplication.
17. Given a collection $\left\{m_{1}, \ldots, m_{n}\right\}$ of elements of M, we can define a map $R^{n} \rightarrow M$ by

$$
\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} \cdot m_{1}+\cdots+a_{n} \cdot m_{n}
$$

Check that this defines a module homomorphism.

Solution: This is just an extension of the argument given above done with n elements.
18. Given a abelian group M and a subgroup N, we can form the abelian group M / N whose elements consist of equivalence classes under the equivalence relation $m \simeq m^{\prime}$ if $m-m^{\prime}$ lies in N.
For $m, m^{\prime}, n, n^{\prime}$ in M, check that if $m \simeq m^{\prime}$ and $n \simeq n^{\prime}$, then $m+n \simeq m^{\prime}+n^{\prime}$.

Solution: We note that $\left(m+m^{\prime}\right)-\left(n+n^{\prime}\right)=(m-n)+\left(m^{\prime}-n^{\prime}\right)$. Since the element $m-n$ and $m^{\prime}-n^{\prime}$ lie in N so does their sum.
19. Given a homomorphism $f: N \rightarrow M$, check that if $n \simeq n^{\prime}$ in $N / \operatorname{ker}(f)$, then $f(n)=$ $f\left(n^{\prime}\right)$.

Solution: If $n-n^{\prime}$ lies in $\operatorname{ker}(f)$, then $f\left(n-n^{\prime}\right)=0$, so $f(n)=f\left(n^{\prime}\right)$.
20. Check that the homomorphism $f: N / \operatorname{ker}(f) \rightarrow M$ is one-to-one.

Solution: This is a standard statement in the theory of group homomorphisms. It does not need any aspect of module theory for this!
21. Let I be an ideal in a principal ideal domain R, then as a module over R it is free. (Hint: If $I=a \cdot R$, then show that the module homomorphism $R \rightarrow I$ given by $s \mapsto a \cdot s$ is one-to-one and onto.)

Solution: Since R is a domain, the map $R \rightarrow R$ given by mutliplication by a is 1-1. Its image is precisely I, hence $R \rightarrow a \cdot R$ is an isomorphism.

