
Integers, Polynomials, Matrices
MTH302 Assignment 7 27 September, 2016

Solutions to Assignment 7

1. Show that Z/n (for any n) is a principal ideal ring.

Solution: An ideal in Z/n is of the forme I/n where I is an ideal in Z such that
I ⊃ n · Z. Since such an ideal is of the form I = a · Z where a divides n. Thus I/n
is generated by a.

2. Show that Z/n is a domain only if n is a prime.

Solution: If n = a · b where a and b are positive integers, then a · b = 0 in Z/n.
Moreover, a and b are less than n, so we have zero-divisors in Z/n. Conversely, if
a · b = 0 in Z/n, then we have an expression a · b = n · k for a multiple of n. Then n
cannot be prime.

3. Given an abelian group M and a ring R and a ring homomorphism φ : R→ End(M).

Given an element a in R and an element m in M , we use the notation a ·m for the result
φ(a)(m) of applying the image of a to the element m.

(a) Use the fact that φ(a) is an endomorphism of M to show that if m′ is another
element of M , then a · (m+m′) = a ·m+ a ·m′.

Solution: We have

a · (m+m′) = φ(a)(m+m′) = φ(a)(m) + φ(a)(m′) = a ·m+ a ·m′

(b) Use the fact that φ preserves addition and the rule of addition of endomorphisms
to show that (a+ b) ·m = a ·m+ b ·m when b is another element of R.

Solution: We have

(a+ b) ·m = φ(a+ b)(m) = (φ(a) + φ(b))(m)(φ(a)(m) + φ(b)(m))

(c) Use the rule of composition of endomorphisms and the fact that φ preserves multi-
plication to show that a · (b ·m) = (a · b) ·m.

Solution: We have

(a · b) ·m = φ(a · b)(m) = (φ(a) ◦ φ(b))(m)φ(a)(φ(b)(m)) = a · (b ·m)
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(d) Use the fact that φ preserves multiplicative identity to show that 1 ·m = m.

Solution: We have

1 ·m = (φ(1))(m) = (1M)(m) = m

Where 1M : M →M denotes the identity map.

(e) Use the fact that φ preserves additive identity to show that 0 · m = 0 where the
latter 0 is the additive identity in M .

Solution: We have

0 ·m = (φ(0))(m) = (0M)(m) = 0

Where 0M : M →M denotes the map which sends everythin to 0.

4. Given an operation a ·m of elements a of a ring R on elements m of an abelian group
M satisfying the identities.

• a · (m+m′) = a ·m+ a ·m′

• (a+ b) ·m = a ·m+ b ·m
• a · (b ·m) = (a · b) ·m
• 1 ·m = m and 0 ·m = 0

Check that φ(a)(m) = a ·m defines a ring homomorphism R→ End(M).

Solution: The first identity shows that φ(a) : M → M is a group homomorphism,
thus we get a map φ : R→ End(M).

The second identity shows that φ : R → End(M) preserves addition. The third
identity shows that φ : R → End(M) preserves multiplication. The fourth and fifth
identities show that φ : R→ End(M) preserves multiplicative and additive identities.

5. Show that I ⊂ R is a submodule of R (as a module over R) if and only if I is an ideal
of R.

Solution: To be a submodule, I must be a subgroup, which means it is closed under
addition. In addition, we must have φ(a)(I) ⊂ I which is the same as saying a·I ⊂ I.
Note that (−1) ·b = −b and so the additive inverse of an element b in I automatically
lies in an ideal I.
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6. Define an operation of a ring R on the abelian group Rn by a·(a1, . . . , an) = (a·a1, . . . , a·
an). Check that this operation makes Rn into a module over R.

Solution: We check that

a · ((a1, . . . , an) + (b1, . . . , bn)) = a · (a1 + b1, . . . , an + bn) =

(a · (a1 + b1), . . . , a · (an + bn)) =

(a · a1 + a · b1, . . . , a · an + a · bn) =

(a · a1, . . . , a · an) + (a · b1, . . . , a · bn) =

a · (a1, . . . , an) + a · (b1, . . . , bn)

Other identities above can be checked in a similar way.

7. Use the natural multiplication by integers to make Z/n a module over Z. Check that
this is not a free module unless n = 0!

Solution: Given any element a in Z/n the map k 7→ k · a from Z → Z/n contains
nZ. So the map is not one-to-one unless n = 0.

8. Given a ring homomorphism f : R→ S, this makes S a module over R by defining a · b
as f(a) · b for a in R and b in S.

Solution: We have already seen that φ : S → End(S) given by φ(s)(t) = s · t is a
ring homomorphism. Now combined with the ring homomorphism R→ S, this gives
a ring homomorphism R→ End(S) as required.

9. Show that the endomorphisms End(Q) of the abelian group of rational numbers is (as a
ring) isomorphic to Q. (Hint: Identify an endomorphism by what it does to the element
1.)

Solution: Given an endomorphism Q → Q, assume that it sends 1 to t. It is clear
that it sends 2 = 1 + 1 to t + t = 2t. Similarly, it sends a positive integer n to nt.
Now, we can write 1 = 1/2 + 1/2 so if 1/2 goes to s then t = s+ s = 2s. This means
that s = t/2. Similarly it follows that 1/m goes to t/m. It then follows that n/m
goes to (n/m)t. Thus any endomorphism is of the for n/m 7→ (n/m)t for a fixed
rational number t.
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10. Show that any finitely generated subgroup of the additive group of rational numbers is
of the form Z · (p/q) (i. e. the collection of all multiples of p/q) for some rational number
p/q.

Solution: Since the subgroup is finitely generated, it is generated by finitely many
fractions pi/qi. If we take q to be the product of the qi’s, it follows that this group
is contained in the subgroup (1/q) · Z. Under the isomorphism Z→ (1/q) · Z (given
by n 7→ n/q), this corresponds to a subgroup of Z on the left-hand side. We have
already seen that such a subgroup has the form p · Z. Hence, the given subgroup is
of the form (p/q) · Z.

11. (Five Stars!) Show that there is a proper subgroup of the rational numbers which is not
of the form Z · (p/q) for some rational number p/q.

Solution: Consider the subgroup of Q which consists of fractions of the form p/2k

for all integers p and k. We see this is not a subgroup of the previous form and is
not finitely generated.

12. If f : N →M is a module homomorphism, check that its image is a submodule.

Solution: Since f(n+n′) = f(n)+f(n′) we see that the image is a subgroup. Since
f(a · n) = a · f(n) we see that the image is closed uder multiplication by elements of
R.

13. For a module homomorphism f : N → M , let K = {n|f(n) = 0} denote the kernel in
the sense of (abelian) groups. Show that it is a submodule of N .

Solution: The kernel of a group homomorphism is a subgroup. We also have f(a ·
n) = a · f(n). So, if f(n) = 0, then f(a · n) = 0.

14. If f : N →M is a homomorphism which is both 1-1 and onto then check that its inverse
g : M → N is a homomorphism.

Solution: The inverse is a group homomorphism. We only need to check that
g(a·m) = a·g(m). Now, if n = g(m), thenm = f(n). So substituting this the identity
becomes g(a ·m) = a ·n. Applying f to both sides we have a ·m = f(a ·n) = a ·f(n).
In that case, we see that the identity holds after applying f . Since f is one-to-one,
the identity already holds before applying f !
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15. Check that when R is a field, then N and M are vector spaces over R and a module
homomorphism N →M is the same as a linear transformation of vector spaces.

Solution: The above identites for a module structure and module homomorphism
are the same as those for a vector space and linear transformation.

16. Given any element m in M , show that s 7→ s · m defines a module homomorphism
R→M where R is considered as a module over itself in a natural way.

Solution: We note that (s+ t) 7→ (s+ t) ·m = s ·m+ t ·m. This shows that this is a
group homomorphism. Secondly s · (t ·m) = (s · t) ·m so it preserves mutliplication.

17. Given a collection {m1, . . . ,mn} of elements of M , we can define a map Rn →M by

(a1, . . . , an) 7→ a1 ·m1 + · · ·+ an ·mn

Check that this defines a module homomorphism.

Solution: This is just an extension of the argument given above done with n ele-
ments.

18. Given a abelian group M and a subgroup N , we can form the abelian group M/N whose
elements consist of equivalence classes under the equivalence relation m ' m′ if m−m′

lies in N .

For m, m′, n, n′ in M , check that if m ' m′ and n ' n′, then m+ n ' m′ + n′.

Solution: We note that (m+m′)−(n+n′) = (m−n)+(m′−n′). Since the element
m− n and m′ − n′ lie in N so does their sum.

19. Given a homomorphism f : N → M , check that if n ' n′ in N/ ker(f), then f(n) =
f(n′).

Solution: If n− n′ lies in ker(f), then f(n− n′) = 0, so f(n) = f(n′).

20. Check that the homomorphism f : N/ ker(f)→M is one-to-one.
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Solution: This is a standard statement in the theory of group homomorphisms. It
does not need any aspect of module theory for this!

21. Let I be an ideal in a principal ideal domain R, then as a module over R it is free. (Hint:
If I = a · R, then show that the module homomorphism R → I given by s 7→ a · s is
one-to-one and onto.)

Solution: Since R is a domain, the map R→ R given by mutliplication by a is 1-1.
Its image is precisely I, hence R→ a ·R is an isomorphism.
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