Solutions to Assignment 6

1. (Starred) Show that for any non-zero 2×2 matrix A, the two-sided ideal generated by A in the ring $M_{2}(\mathbb{Q})$ of 2×2 matrices with rational entries, is the whole ring.

Solution: As seen before any non-zero matrix can be converted to diagonal form by row and column reduction operations. Thus, a matrix of the form $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ lies in this two-sided ideal where either a or b is non-zero. From this it is not difficult to show that the matrix $E_{1,1}$ which has 0 except its $(1,1)$ entry is 1 , is in this ideal. Now $E_{i, j} \cdot E_{j, k}=E_{i, k}$. So we can see that every element of the form $E_{i, j}$ is in the ideal. Now, every element is a linear combination of these matrices so the two-sided ideal is the whole ring.
2. Take any 3×3 matrix B with rational coefficients and consider the matrix $A=B-T \cdot 1$ where 1 denotes the identity matrix. Calculate the normal form of this matrix A. Repeat this a few times to ensure that you have understood all steps of the procedure. Try it with a 4×4 matrix for further practice.

Solution: We start with the matrix

$$
B=\left(\begin{array}{ccc}
2 & 0 & -1 \\
2 & 0 & -\frac{1}{2} \\
-2 & 1 & 0
\end{array}\right)
$$

This gives

$$
A=\left(\begin{array}{ccc}
2-x & 0 & -1 \\
2 & -x & -\frac{1}{2} \\
-2 & 1 & -x
\end{array}\right)
$$

We use the entry 1 at $(3,2)$ as a pivot.
We add the x multiple of row 3 to row 2 . Then we add the 2 multiple of column 2 to column 1 and the x multiple of column 2 to column 3 .

$$
A_{1}=\left(\begin{array}{ccc}
-x+2 & 0 & -1 \\
-2 x+2 & 0 & -x^{2}-\frac{1}{2} \\
0 & 1 & 0
\end{array}\right)
$$

We now use the entry -1 at $(1,3)$ as the pivot.
We add the $-x^{2}-\frac{1}{2}$ multiple of row 1 to row 2 and then we add the $-x+2$ multiple of column 3 to column 1 .

$$
A_{3}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
\frac{1}{2}\left(2 x^{2}+1\right)(x-2)-2 x+2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Now interchanging column 3 and column 1, followed by the interchange of row 3 and row 1 with a change of sign once each time gives us a normal form.

$$
A_{4}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -\frac{1}{2}\left(2 x^{2}+1\right)(x-2)+2 x-2
\end{array}\right)
$$

3. Check that \mathbb{Z} / p is a field if and only if p is a prime number.

Solution: If p is not prime then there are positive integers a and b less than p so that $a \cdot b=0$. This means that $a \cdot b=0$ in \mathbb{Z} / p; thus, the latter is not a field as it has zero divisors.
If p is a prime, then every positive integer a which is less than it is co-prime to it. Thus we have x and y integers so that $a \cdot x+p \cdot y=1$. It follows that $a \cdot x=1$ in \mathbb{Z} / p. Hence, every non-zero element of the latter is a unit. Since it is commutative, it is a field.

