Solutions to Assignment 5

1. Given an onto homomorphism $\mathbb{Z}^r \to M$, show that there are elements a_1, \ldots, a_r so that every element of M can be written as an additive combination of the elements a_i .

Solution: Let e_i be the element of \mathbb{Z}^r of the form $(0, \ldots, 1, \ldots, 0)$ where all entries are 0 except for a 1 in the *i*-th place. We take a_i to be the image of e_i under the homomorphism.

Since the homomorphism is onto, any element in m is the image of some element (b_1, \ldots, b_r) of \mathbb{Z}^r . This element can also be written as $\sum_{i=1}^r b_i \cdot e_i$, hence its image in M is $\sum_{i=1}^r b_i \cdot a_i$ (by the additivity of the homomorphism). Hence $m = \sum_{i=1}^r b_i \cdot a_i$.

- 2. Given an abelian group M and an idempotent p in End(M). Let $N = ker(p) = \{a \in M : p(a) = 0\}$ be the kernel of p and L = p(M) be the image of p. We have a natural group homomorphism $N \times L \to M$ given by $(n, l) \mapsto n + l$. Given any a in M we can put l = p(a) and n = a p(a).
 - (a) Check that p(n) = 0. Moreover, check that if p(a) is in N, then p(a) = 0 so that $N \cap L = 0$.

Solution: We have

 $p(n) = p(a - p(a)) = p(a) - p(p(a)) = p(a) - p^{2}(a) = p(a) - p(a) = 0$

(b) Conclude that $N \times L \to M$ is an isomorphism (i.e. it is one-to-one and onto).

Solution: Clearly a = (a - p(a)) + p(a) = n + l, so that map is onto. If a = n + l = 0, then l = p(a) = p(0) = 0 and then n = a - p(a) = 0 - 0 = 0. This shows that the map is one-to-one.

- 3. Suppose that we have a group homomorphism $f: M \to \mathbb{Z}^r$ for some r and that this map is *onto*. For each i between 1 and r we have the element e_i of \mathbb{Z}^r which has 1 in the i-th place and 0 elsewhere. Since f is onto, there is an element a_i of M such that $f(a_i) = e_i$. We define a homomorphism $g: \mathbb{Z}^r \to M$ so that $g(e_i) = a_i$.
 - (a) Show that $f \circ g$ is the identity endomorphism of \mathbb{Z}^r .

Solution: First of all, we note that $(f \circ g)(e_i) = f(g(e_i)) = f(a_i) = e_i$ by the choice of a_i . Secondly, we note (as above) that every element (b_1, \ldots, b_r) of \mathbb{Z}^r is expressible as $\sum_{i=1}^r b_i \cdot e_i$. Hence, its image under $f \circ g$ is itself.

MTH302

Assignment 5

(b) Show that g is one-to-one so that $g(\mathbb{Z}^r)$ can be thought of as a copy of \mathbb{Z}^r inside M.

Solution: If $g(b_1, \ldots, b_r) = 0$, then $f(g(b_1, \ldots, b_r)) = (0, \ldots, 0)$. It follows that $(0, \ldots, 0) = (f \circ g)(b_1, \ldots, b_r) = (b_1, \ldots, b_r)$

(c) Show that $p = g \circ f$ is an idempotent endomorphism of M.

Solution: We check $p \circ p = g \circ f \circ g \circ f = g \circ u \circ f$ where $u = f \circ g$ is the identity map on \mathbb{Z}^r . It follows that the $g \circ u \circ f = g \circ f = p$, so that $p \circ p = p$.

(d) Show that M is isomorphic to $\ker(f) \times \mathbb{Z}^r$.

Solution: We have produced an idempotent p on M. Hence M is isomorphic to the sum of the kernel of p and the image of p as shown above. The image of p is the same as the image of g since f is onto; since g is one-to-one, the image of g can be identified with \mathbb{Z}^r . On the other hand the kernel of p is the same as the kernel of f since g is one-to-one.

4. Select a 4×4 integer matrix A and reduce it to normal form using row and column reductions. Do it a few times with different matrices to make sure that all the steps outlined in the notes are used! Increase the size to 5×5 for extra practice.

Solution: We start with the matrix

$$A = \begin{pmatrix} 11 & 0 & 7 & 1\\ -16 & 3 & 1 & 1\\ 0 & 3 & -1 & -5\\ -4 & 0 & 0 & 2 \end{pmatrix}$$

We start with the pivot as the 1 in the (1, 4) entry in the top right corner. We add the -1 (respectively 5 and -2) of row 1 to row 2 (respectively 3 and 4) to get:

$$A_1 = \begin{pmatrix} 11 & 0 & 7 & 1 \\ -27 & 3 & -6 & 0 \\ 55 & 3 & 34 & 0 \\ -26 & 0 & -14 & 0 \end{pmatrix}$$

We add the -11 (respectively -7) of column 4 to row 1 (respectively 3) to get:

$$A_2 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ -27 & 3 & -6 & 0 \\ 55 & 3 & 34 & 0 \\ -26 & 0 & -14 & 0 \end{pmatrix}$$

We next have the pivot as the 3 in the (2, 2) entry.

We add the -1 multiple of row 2 to row 3, the 9 multiple of column 2 to column 1 and the 2 multiple of column 2 to column 3.

$$A_3 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ 82 & 0 & 40 & 0 \\ -26 & 0 & -14 & 0 \end{pmatrix}$$

We next have the pivot as the -14 in the (4,3) entry. We add the -2 multiple of column 3 to column 1.

$$A_4 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ 2 & 0 & 40 & 0 \\ 2 & 0 & -14 & 0 \end{pmatrix}$$

We next have the pivot as the 2 in the (3,1) entry.

We add the -1 multiple of row 3 to row 4 and the -20 multiple of column 1 to column 3. (0, 0, 0, 0, 1)

$$A_5 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & -54 & 0 \end{pmatrix}$$

Interchanging column 1 with column 4 and then column 3 with column 4 and switching one sign each time.

$$A_6 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -54 \end{pmatrix}$$

Now it is in diagonal form, but not in normal form since 3 does not divide 2. So we add row 3 to row 2 and subtract column 3 from column 2.

$$A_7 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & -2 & 2 & 0 \\ 0 & 0 & 0 & -54 \end{pmatrix}$$

We now use the 1 in the (2, 2) entry as the pivot.

We add the 2 multiple of row 2 to row 3 and then the -2 multiple of column 2 to column 3. (1 - 2 - 2 - 2)

$$A_8 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & -54 \end{pmatrix}$$

Since 6 divides -54, this is in normal form.