Solutions to Assignment 5

1. Given an onto homomorphism $\mathbb{Z}^{r} \rightarrow M$, show that there are elements a_{1}, \ldots, a_{r} so that every element of M can be written as an additive combination of the elements a_{i}.

Solution: Let e_{i} be the element of \mathbb{Z}^{r} of the form $(0, \ldots, 1, \ldots, 0)$ where all entries are 0 except for a 1 in the i-th place. We take a_{i} to be the image of e_{i} under the homomorphism.
Since the homomorphism is onto, any element in m is the image of some element $\left(b_{1}, \ldots, b_{r}\right)$ of \mathbb{Z}^{r}. This element can also be written as $\sum_{i=1}^{r} b_{i} \cdot e_{i}$, hence its image in M is $\sum_{i=1}^{r} b_{i} \cdot a_{i}$ (by the additivity of the homomorphism). Hence $m=\sum_{i=1}^{r} b_{i} \cdot a_{i}$.
2. Given an abelian group M and an idempotent p in $\operatorname{End}(M)$. Let $N=\operatorname{ker}(p)=\{a \in$ $M: p(a)=0\}$ be the kernel of p and $L=p(M)$ be the image of p. We have a natural group homomorphism $N \times L \rightarrow M$ given by $(n, l) \mapsto n+l$. Given any a in M we can put $l=p(a)$ and $n=a-p(a)$.
(a) Check that $p(n)=0$. Moreover, check that if $p(a)$ is in N, then $p(a)=0$ so that $N \cap L=0$.

Solution: We have

$$
p(n)=p(a-p(a))=p(a)-p(p(a))=p(a)-p^{2}(a)=p(a)-p(a)=0
$$

(b) Conclude that $N \times L \rightarrow M$ is an isomorphism (i.e. it is one-to-one and onto).

Solution: Clearly $a=(a-p(a))+p(a)=n+l$, so that map is onto. If $a=n+l=0$, then $l=p(a)=p(0)=0$ and then $n=a-p(a)=0-0=0$. This shows that the map is one-to-one.
3. Suppose that we have a group homomorphism $f: M \rightarrow \mathbb{Z}^{r}$ for some r and that this map is onto. For each i between 1 and r we have the element e_{i} of \mathbb{Z}^{r} which has 1 in the i-th place and 0 elsewhere. Since f is onto, there is an element a_{i} of M such that $f\left(a_{i}\right)=e_{i}$. We define a homomorphism $g: \mathbb{Z}^{r} \rightarrow M$ so that $g\left(e_{i}\right)=a_{i}$.
(a) Show that $f \circ g$ is the identity endomorphism of \mathbb{Z}^{r}.

Solution: First of all, we note that $(f \circ g)\left(e_{i}\right)=f\left(g\left(e_{i}\right)\right)=f\left(a_{i}\right)=e_{i}$ by the choice of a_{i}. Secondly, we note (as above) that every element $\left(b_{1}, \ldots, b_{r}\right)$ of \mathbb{Z}^{r} is expressible as $\sum_{i=1}^{r} b_{i} \cdot e_{i}$. Hence, its image under $f \circ g$ is itself.
(b) Show that g is one-to-one so that $g\left(\mathbb{Z}^{r}\right)$ can be thought of as a copy of \mathbb{Z}^{r} inside M.

Solution: If $g\left(b_{1}, \ldots, b_{r}\right)=0$, then $f\left(g\left(b_{1}, \ldots, b_{r}\right)\right)=(0, \ldots, 0)$. It follows that

$$
\left.(0, \ldots, 0)=(f \circ g)\left(b_{1}, \ldots, b_{r}\right)\right)=\left(b_{1}, \ldots, b_{r}\right)
$$

(c) Show that $p=g \circ f$ is an idempotent endomorphism of M.

Solution: We check $p \circ p=g \circ f \circ g \circ f=g \circ u \circ f$ where $u=f \circ g$ is the identity map on \mathbb{Z}^{r}. It follows that the $g \circ u \circ f=g \circ f=p$, so that $p \circ p=p$.
(d) Show that M is isomorphic to $\operatorname{ker}(f) \times \mathbb{Z}^{r}$.

Solution: We have produced an idempotent p on M. Hence M is isomorphic to the sum of the kernel of p and the image of p as shown above. The image of p is the same as the image of g since f is onto; since g is one-to-one, the image of g can be identified with \mathbb{Z}^{r}. On the other hand the kernel of p is the same as the kernel of f since g is one-to-one.
4. Select a 4×4 integer matrix A and reduce it to normal form using row and column reductions. Do it a few times with different matrices to make sure that all the steps outlined in the notes are used! Increase the size to 5×5 for extra practice.

Solution: We start with the matrix

$$
A=\left(\begin{array}{cccc}
11 & 0 & 7 & 1 \\
-16 & 3 & 1 & 1 \\
0 & 3 & -1 & -5 \\
-4 & 0 & 0 & 2
\end{array}\right)
$$

We start with the pivot as the 1 in the $(1,4)$ entry in the top right corner.
We add the -1 (respectively 5 and -2) of row 1 to row 2 (respectively 3 and 4) to get:

$$
A_{1}=\left(\begin{array}{cccc}
11 & 0 & 7 & 1 \\
-27 & 3 & -6 & 0 \\
55 & 3 & 34 & 0 \\
-26 & 0 & -14 & 0
\end{array}\right)
$$

We add the -11 (respectively -7) of column 4 to row 1 (respectively 3) to get:

$$
A_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
-27 & 3 & -6 & 0 \\
55 & 3 & 34 & 0 \\
-26 & 0 & -14 & 0
\end{array}\right)
$$

We next have the pivot as the 3 in the $(2,2)$ entry.
We add the -1 multiple of row 2 to row 3 , the 9 mutliple of column 2 to column 1 and the 2 multiple of column 2 to column 3 .

$$
A_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 3 & 0 & 0 \\
82 & 0 & 40 & 0 \\
-26 & 0 & -14 & 0
\end{array}\right)
$$

We next have the pivot as the -14 in the $(4,3)$ entry.
We add the -2 multiple of column 3 to column 1 .

$$
A_{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 3 & 0 & 0 \\
2 & 0 & 40 & 0 \\
2 & 0 & -14 & 0
\end{array}\right)
$$

We next have the pivot as the 2 in the $(3,1)$ entry.
We add the -1 multiple of row 3 to row 4 and the -20 multiple of column 1 to column 3.

$$
A_{5}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 3 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & -54 & 0
\end{array}\right)
$$

Interchanging column 1 with column 4 and then column 3 with column 4 and switching one sign each time.

$$
A_{6}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & -54
\end{array}\right)
$$

Now it is in diagonal form, but not in normal form since 3 does not divide 2. So we add row 3 to row 2 and subtract column 3 from column 2 .

$$
A_{7}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & -2 & 2 & 0 \\
0 & 0 & 0 & -54
\end{array}\right)
$$

We now use the 1 in the $(2,2)$ entry as the pivot.
We add the 2 multiple of row 2 to row 3 and then the -2 multiple of column 2 to column 3.

$$
A_{8}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & -54
\end{array}\right)
$$

Since 6 divides -54 , this is in normal form.

