Primes, Irreducibles, Maximal Ideals, Factorisation, Block Form (contd.)

1. Show that the only irreducible elements in the ring of integers are of the form $\pm p$ where p is a prime number.
2. Show that the elements of the form $T-a$ in the ring $\mathbb{Q}[T]$ are irreducible. (This is true with any field.)
3. If p is an irreducible element of R and p lies in the ideal $q \cdot R$, then show that either q is a unit (so that $q \cdot R=R$) or $q=p \cdot u$ where u is a unit.
4. Check that P is a prime ideal if and only if R / P is a domain.
5. Check that $(1+\sqrt{-5})(1-\sqrt{-5})=6=2 \cdot 3$. Show that 2 does not divide $1+\sqrt{-5}$ or $1-\sqrt{-5}$ in the ring R.
6. Check that $1+\sqrt{-5}=\alpha \cdot \beta$ with α and β in R is only possible if either α or β is ± 1.
7. Conclude that $1+\sqrt{-5}$ is irreducible but not prime.
8. Use the above reasoning to conclude that, if P is a maximal ideal then R / P is a field.
9. Conversely, if I is an ideal in a commutative ring R and R / I is a field, then show that I is a maximal ideal.
10. Given a maximal ideal P, try to prove directly that if $a \cdot b$ lies in P and a does not lie in P then b lies in P.
11. If u is a unit in a ring R and $u=a \cdot b$, then show that a and b are units in R.
12. If a prime q is a multiple of a prime p in a domain R then show that $q=p \cdot u$ where u is a unit. (Hint: Look at the proof that primes are irreducible.)
13. If a is an element of a PID R which is not a multiple of a prime p, then show that $a \cdot R+p \cdot R=R$. (Hint: a gives a non-zero element of R / p which is a field.)
14. Find polynomials $A(T)$ and $B(T)$ so that $A(T) \cdot T+B(T) \cdot\left(T^{2}-1\right)=1$.
15. Use the above to find a polynomial $C(T)$ which is divisible by T so that its reduction modulo $T^{2}-1$ is equivalent to $T+1$.
16. Find an integer n so that it is 7 modulo 8 and 8 modulo 9 .
17. Given a and b distinct rational numbers, find a matrix S (in terms of a and b) so that

$$
S \cdot\left(\begin{array}{ll}
a & 1 \\
0 & b
\end{array}\right) \cdot S^{-1}=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

18. Given a and $b \neq 0$ rational numbers, find a matrix S (in terms of a and b) so that

$$
S \cdot\left(\begin{array}{cc}
a-b & b \\
-b & a+b
\end{array}\right) \cdot S^{-1}=\left(\begin{array}{cc}
a & 0 \\
1 & a
\end{array}\right)
$$

19. Show that $T^{2}+1$ is irreducible.
20. Show that $T^{3}-T+1$ is irreducible.
21. Check that the Liebnitz rule is satisfied by the formal derivative.

$$
(P(T) \cdot Q(T))^{\prime}=P^{\prime}(T) Q(T)+P(T) Q^{\prime}(T)
$$

22. Check that the following identity holds:

$$
P^{\prime}(T)=\sum_{i=1}^{n} \frac{\left(T-z_{1}\right) \cdots\left(T-z_{n}\right)}{\left(T-z_{i}\right)}
$$

23. (Starred) Show that the converse is also true. If $P(T)$ and $P^{\prime}(T)$ have a common factor, then there is a repeated root.
24. Find an integer n so that $n^{2}+1$ is divisible by $125\left(=5^{3}\right)$.
25. Find a polynomial $P(T)$ so that $P(T)^{2}+1$ is divisible by $\left(T^{3}-1\right)^{2}$.
