Modules over $\mathbb{Q}[T]$

1. Given a module M over $\mathbb{Q}[T]$, we can also think of it as a module (vector space) over \mathbb{Q} (with something extra!). Check that the endomorphism $m \mapsto T \cdot m$ on M is a linear transformation of the vector space M over \mathbb{Q}.
2. Given a vector space V over \mathbb{Q} and a linear transformation $A: V \rightarrow V$, we can define $f: \mathbb{Q}[T] \rightarrow \operatorname{End}(V)$ by $f(P(T))(v)=P(A)(v)$ where

$$
P(A)(v)=a_{0} \cdot v+a_{1} \cdot A(v)+\cdots+a_{n} \cdot A^{n}(v) \text { when } P(T)=a_{0}+a_{1} T+\cdots+a_{n} T^{n}
$$

Check that f is a ring homomorphism.
3. Show that the only ideals in a field F are F and $\{0\}$. and that a field is a domain. Conclude that a field is a PID.
4. If D is a matrix in normal form over a field F, show that the diagonal entries of D must be of a certain number of non-zero entries followed by 0 's.
5. Use the above exercise to show that any finitely generated vector space has a basis.
6. Show that $\mathbb{Q}[T] /(P(T) \mathbb{Q}[T])$ is a vector space over \mathbb{Q} with basis given by $1, T, \ldots, T^{d-1}$ where d is the degree of P.
7. In the above basis, check the matrix of the operation multiplication by T is given by

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
-a_{0} & -a_{1} & a_{2} & \cdots & -a_{d-1}
\end{array}\right)
$$

where $P(T)=T^{d}+a_{d-1} T^{d-1}+\cdots+a_{0}$.
8. Check that for any polynomial $Q(T)$, the operation multiplication by $Q(T)$ on $\mathbb{Q}[T] / P(T)$ in the basis $1, T, \ldots, T^{d-1}$ is given by the matrix $Q(A)$ (see exercise 2 to see how $Q(A)$ is defined.)
9. Check that $P(A)=0$. (Hint: Use the previous exercise.)
10. As $\mathbb{Q}[T] / P(T)$ is a module over $\mathbb{Q}[T]$, we have the ring homomorphism

$$
\mathbb{Q}[T] \rightarrow \operatorname{End}(\mathbb{Q}[T] / P(T)
$$

Check that the kernel of this ring homomorphism is precisely $P(T) \cdot \mathbb{Q}[T]$.
11. Choose a square matrix A of size 3 (or 4) and carry out the row and column reductions on $T-A$ to calculate the basis in which it has the block form. Using this calculate its minimal polynomial and characteristic polynomial.
12. Given a 4×4 matrix A. In the normal form of $T-A$ what are the possible degrees of the diagonal entries (assume that we write them so that $P_{1}(T)\left|P_{2}(T)\right| P_{3}(T) \mid P_{4}(T)$. Using this find the possible sizes of the block form of A.

