
Jordan Decomposition and Hensel’s Lemma

One wants to study the action of T in on Q[T ]/(P (T )n) when P (T ) is an
irreducible polynomial in Q[T ].

How does one find such irreducible polynomials? Suppose P (T ) is a polynomial
of the form T n + a1T n−1 + · · ·+ an where all the ai are integers. Now, if p/q is
a rational number that satisfies this polynomial then, by clearing denominators,
we see that we have

pn + a1pn−1q + · · ·+ anqn = 0

In that case, any prime factor of q also divides pn and hence p. Thus, p/q = b is
an integer. In other words, we have shown that such a polynomial has a root in
rationals if and only if it has an integer root.

If a polynomial has degree 2 or 3 and it can be factored, then at least one of
the factors has degree 1. In other words, if it is not irreducible, then it has a
linear factor. This can be combined with the above to show some polynomials
are irreducible.

Exercise: Show that T 2 + 1 is irreducible.

Exercise: Show that T 3 − T + 1 is irreducible.

Gauss generalised the above to show that if T n + a1T n−1 + · · ·+ an is such that
ai are integers, then if it can be factored, then the factors too can be taken to
have integer coefficients. This was used by Lagrange to give an explicit technique
to determine if a polynomial is irreducible.

Repeated Roots

We have seen that if the minimal polynomial of a matrix has distinct roots over
the complex numbers, then it is diagonalisable. Do we have a method to check
whether a polynomial has distinct roots?

Let us define the formal derivative of a polynomial P (T ) = a0T n + a1T n−1 +
· · ·+ an as

P ′(T ) = na0T n−1 + (n− 1)a1T n−2 + · · ·+ an−1

In other words, we have additivity (P (T ) + Q(T ))′ = P ′(T ) + Q′(T ) and
(T k)′ = kT k−1.

Exercise: Check that the Liebnitz rule is satisfied:

(P (T ) ·Q(T ))′ = P ′(T )Q(T ) + P (T )Q′(T )
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Now, suppose that a polynomial P (T ) is written over complex numbers as $ P(T)
= (T-z_1) . . . (T-z_n)$ where zi are complex numbers which are not necessarily
distinct.

Exercise: Check that the following identity holds:

P ′(T ) =
n∑

i=1

(T − z1) · · · (T − zn)
(T − zi)

Each term in the sum vanishes at zi except possibly the i-th term. However, if
zi = zj for some i 6= j, then the i-th term vanishes as well since we get zi − zj

as a factor of the that term in P ′(zi).

Thus, if P (T ) has repeated roots then P (T ) and P ′(T ) have a common factor.
In other words, if P (T ) and P ′(T ) have no common factor, then the roots of
P (T ) are distinct.

Exercise: (Starred) Show that the converse is also true. If P (T ) and P ′(T )
have a common factor, then there is a repeated root.

In particular, we note that if P (T ) is irreducible in Q[T ], then it cannot have a
common factor with P ′(T ) (which has smaller degree). Hence, it has distinct
roots.

An Example

Let us consider the matrix A obtained as multiplication by T on Q[T ]/(T 2 + 1)2.
We wish to write A = D + N where D is a diagonalizable matrix and N is a
nilpotent matrix; we also want D and N to be expressed as polynomials in A.

Now, the element T in Q[T ]/(T 2 + 1) already satisfies T 2 + 1 which has distinct
roots over complex numbers. Any multiple of T 2+1 is nilpotent in Q[T ]/(T 2+1)2.
So we should look for D = T −B(T )(T 2 +1) so that D2 +1 = 0 in Q[T ](T 2 +1)2.
Is this possible?

D2 +1 = (T −B(T )(T 2 +1))2 +1 = T 2−2TB(T )(T 2 +1)+B(T )2(T 2 +1)2 +1

Modulo (T 2 + 1)2, this is (T 2 + 1)(1 − 2TB(T )). So, if we want this to be
divisible by (T 2 + 1)2, then we want 1− 2TB(T ) to be divisible by T 2 + 1. This
can be arranged by taking B(T ) = −(1/2)T .

In summary, we can take D to be the action of T +(1/2)T (T 2 +1) on Q[T ]/(T 2 +
1)2. Then D2 + 1 = 0 is the minimal polynomial of D and so D is diagonalisable
over complex numbers. Moreover, A−D is the action of −(1/2)T (T 2 + 1) on
this vector space and so it is nilpotent.

In order to generalise this we need to understand Hensel’s Lemma (or the
Newton-Raphson algorithm).
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Another example

Before working out Hensel’s Lemma in general, let us work out another example,
in this case over integers.

We begin by noting that 2 is an element of Z/7 such that 23 = 1 in Z/7. Can
we find an element a in Z/73 so that a3 = 1 in that ring?

Let us start with an element of the form 2 + 7n. We note that

(2 + 7n)3 − 1 = 8− 1 + 3 · 22 · (7n) (mod 72) = 7(1 + 12n)

So we need to solve 1 + 12n = 0 (mod 7). We see easily that n = 4 is a solution
to this. Thus, we see that 30 = 2 + 7 · 4 satisfies 303 = 1 (mod 72). Next, we try
something of the form 30 + 72n to see if that has cube 1 modulo 73.

(30+72n)3−1 = 303−1+3 ·302 · (72n) (mod 73) = 72((303−1)/72 +3 ·302n)

So we need to solve (303 − 1)/72 + 3302n = 0 (mod 7). Now, 30 = 2 (mod 7) so
this is the same a (303 − 1)/72 + 12n = 0 (mod 7). As before, we can see that
this can be solved by n = 4 · (303 − 1)/72. Thus, we see that the solution we are
looking for is 30 + 4 · (303 − 1) (mod 73) = 193.

Hensel’s Lemma

Is there a method to the above “madness”? The basic idea is as follows. Given
a polynomial P (T ) such that P (T ) and P ′(T ) have no common factor in F [T ]
(for some field F ). (As seen above, this is the same as the condition that no
root is repeated.) We can then write A(T )P (T ) + B(T )P ′(T ) = 1 for suitable
polynomials A(T ) and B(T ).

Now consider the sequence of polynomials An(T ) defined inductively as follows
A1(T ) = T .

An+1(T ) = An(T )−B(T )P (An(T )) for n ≥ 1

We claim, by induction, that P (An(T )) is 0 in F [T ]/P (T )n. Suppose we have
proved this upto some n (it is obvious for n = 1). To simplify notation, we write
An+1(T ) = An(T ) + En(T ) and note that En(T ) is divisible by P (T )n. Now we
expand

P (An+1(T )) = P (An(T )+En(T )) = P (An(T ))+En(T )P ′(An(T )) (mod P (T )n+1)
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since En(T )2 and higher powers are divisible by P (T )2n and 2n ≥ n + 1 since
n ≥ 1. Now substituting En(T ) = −B(T )P (An(T )) we see that this becomes

P (An+1(T )) = P (An(T ))−B(T )P (An(T ))P ′(An(T )) = P (An(T )) (1−B(T )P ′(An(T ))

In order to make the right-hand side divisible by P (T )n+1 we need to have
1−B(T )P ′(An(T )) divisible by P (T ). Now, we see by construction that An(T ) =
T (mod P (T )), so this becomes 1−B(T )P ′(T ) (mod P (T )). By choice of B(T )
this is A(T )P (T ) and thus 0 (mod P (T )).

We note that by construction T −An(T ) is divisible by P (T ) and thus nilpotent
in F [T ]/P (T )n. Hence we conclude that:

If P (T ) and P ′(T ) have no common factor in F [T ], then the element T in
F [T ]/P (T )n can be written in the form An(T ) + Nn(T ) where P (An(T )) is 0 in
this ring and Nn(T ) is nilpotent in this ring.

This result is called the Jordan decomposition theorem since it allows us to
decompose a matrix A which satisfies an equation of the form P (T )n where P (T )
and P ′(T ) have no common factor into a form A = D + N where D satisfies
P (D) = 0 and N is nilpotent.
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