
Jordan Canonical Form

An endomorphism A of a (finite dimensional) vector space M over Q (or more
generally a field) can be identified with a square matrix by fixing a basis of M
over Q. When we change the basis of M , the matrix A is replaced by S ·A · S−1

for a suitable invertible matrix S.

In a previous section we showed that there is a basis in which the matrix takes
a block form with blocks along the diagonal of the form CP1 , CP2 , . . . , CPk

,
where CP denotes the “companion” matrix of a polynomial P , and we have
P1|P2| · · · |Pk where Pi are polynomials in Q[T ].

To further study M , we must therefore study the matrix CP . Recall that this is
the matrix by which T operates on the vector space Q[T ]/P (T ) in terms of the
basis 1, T, . . . , T d−1 of this vector space of dimension d = deg(P ). We have

CP =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −ad−1


where P (T ) = T d + ad−1T d−1 + · · ·+ a0.

In order to understand this further, we will apply the theorem on factorisation
of elements of a PID to the polynomial ring Q[T ] (or more generally F [T ] for a
field F ).

Chinese Remainder Theorem

Given a and b elements in a commutative ring R such that a ·R + b ·R = R; this
means that there are elements x and y in R such that a · x + b · y = 1. Consider
the natural homomorphism R/(a · b)→ R/a×R/b given by c 7→ (c, c).

If the image (c, c) of c is (0, 0), then c = a ·m and c = b · n for some elements m
and n in R. It follows that

c = c · (a · x + b · y) = b · n · a · x + a ·m · b · y = (a · b) · (n · x + m · y)

Hence, c is itself 0 in R/(a · b). Thus, the map is one-to-one.

Conversely, given (d, e) in R/a×R/b, we take

c = d · (1− a · x) + e · (1− b · y)

We then check that

1



c− d = −d · a · x + e · a · x = a · (e · x− d · x)

We similarly check that c−e is divisible by b. Hence c maps to (d, e) in R/a×R/b.

In other words, we have checked that the above map is an isomorphism. This is
known as the Chinese Remainder Theorem.

Jordan Blocks

Given a polynomial P (T ) over Q[T ], we factor it as

P (T ) = u · P1(T )n1 · · ·Pk(T )nk

where the ni are positive integers and Pi(T ) are irreducible polynomials. By an
application of the Chinese Remainder Theorem it follows that

Q[T ]/P (T ) = Q[T ]/(P1(T )n1)× · · · ×Q[T ]/(Pk(T )nk )

Thus, the study of CP (which is the matrix of multiplication by T on the above
vector space in the basis 1, T, . . . , T n−1, can be reduced to a block matrix with
diagonal blocks of the form CQ for Q a power of an irreducible polynomial.

We can also do this over any field F .

In particular, let us consider the case where the irreducible polynomial is of
the form (T − a) for some element a. In that case, we want to understand
the action of T on the space F [T ]/((T − a)n). Let us study this in the basis
1, (T − a), . . . , (T − a)n−1. We note that

T · (T − a)k = a · (T − a)k + (T − a)k+1

It follows that the matrix of multiplication by T in this basis has the form

Ja,k =


a 1 0 . . . 0
0 a 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . a


(In other words, we have a’s on the diagonal and 1’s above the diagonal.) This
is a Jordan block.

Combining the results of the previous sections we see that if the minimal
polynomial P (T ) of a matrix splits up as
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P (T ) = u · (T − a1)n1 · · · (T − ar)nr

wth distinct values ai, then the matrix can be written in block form with each
block as a Jordan block Jai,m for m ≤ ni. (We may need smaller m for the other
factors Pi that divide the minimal polynomial and are principal factors of the
characteristic polynomial as before.)

In particular, if ni = 1 for all i, which is to say that the minimal polynomial
P (T ) has distinct roots, then the matrix can be written in diagonal form.

Conversely, if a matrix is D in diagonal form with a1, . . . , ar as the distinct
entries along the diagonal, then it is quite easy to see that the matrix satisfies
the polynomial Q(T ) = (T − a1) . . . (T − ar). By the definition of the minimal
polynomial, the minimal polynomial of D divides Q(T ), hence it has distinct
roots.

Exercise: Show that Q(T ) is the minimal polynomial for a diagonal matrix
whose diagonal entries are from the set of distinct elements {a1, . . . , ar}.

To apply the above steps, we need to write the polynomial P (T ) as a product of
factors of degree 1. This can always be done over the field of complex numbers.

Fundamental Theorem of Algebra: A polynomial in C[T ] is irreducible if
and only if it is of degree 1.

Thus, a matrix can be diagonalised over the field of complex numbers if and
only if its minimal polynomial has distinct roots.

In general, any matrix can be put in Jordan Block form over the field of complex
numbers.

The proof of the fundamental theorem of algebra is not an algebraic proof! In
fact, it depends on topological properties of the field of real numbers or the
theory of analytic functions on the field of complex numbers. Thus, a proof of
this theorem can only be found in a book on complex analysis or some book
where the ordered field of real numbers is studied in detail. In particular, we
will not prove it here.

Exercise: Given a and b distinct rational numbers, find a matrix S (in terms
of a and b) so that

S ·
(

a 1
0 b

)
· S−1 =

(
a 0
0 b

)
Exercise: Given a and b 6= 0 rational numbers, find a matrix S (in terms of a
and b) so that

S ·
(

a− b b
−b a + b

)
· S−1 =

(
a 0
1 a

)
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