
Primality and Factoring in PIDs

We already know that ideals in a principal ideal domain are principal. This is
like the ring of integers. In fact, we can generalise the fundamental theorem of
arithmetic that factorises a number as a product of primes to a PID as well.

In this section we will only deal with commutative rings.

Irreducible and Prime elements in a ring

Recall that a unit in R is an element u for which there is an element v so that
u · v = v · u = 1.

We say that a non-unit element p of R is irreducible if whenever we write p = a ·b
with a and b in R, either a or b is a unit.

Exercise: Note that the only irreducible elements in the ring of integers are of
the form ±p where p is a prime number.

Exercise: Note that the elements of the form T − a in the ring Q[T ] are
irreducible. (This is true with any field.)

Exercise: If p is an irreducible element of R and p lies in the ideal q ·R, then
show that either q is a unit (so that q ·R = R) or q = p · u where u is a unit.

A proper ideal P in a ring R is said to be a prime ideal if the following property
holds: whenever a · b lies in P (for a and b in R), either a or b lies in P .

Exercise: Check that P is a prime ideal if and only if R/P is a domain.

In particular, if R is a domain, then {0} is a prime ideal!

In continuation of the terminology with integers, we say that a non-zero element
p in R is a prime if the ideal generated by it is a prime ideal.

If p is a prime in a domain R (our convention is that domains are commutative)
and p = a · b, then a · b lies in p ·R. So, by primality of p ·R, we must have a
or b in it. Suppose a is in p · R, then a = p · c. This means that p = p · c · b.
Since we are in a domain and p is non-zero this means 1 = c · b. Hence b is a
unit. Similarly, if b is in p ·R, then we can show that a is a unit. Thus, we have
shown that p is irreducible.

In summary, a prime element of a domain is also irreducible.

Let R denote the ring consisting of matrices of the form
(
a b
5b a

)
where a and b

are integers. We can identify R as the subring of the field C of complex numbers
that consists of elements of the form a+ b

√
−5 where a and b are integers.

Exercise: Check that (1 +
√
−5)(1−

√
−5) = 6 = 2 · 3. Show that 2 does not

divide 1 +
√
−5 or 1−

√
−5 in the ring R.
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Exercise: Check that 1 +
√
−5 = α · β with α and β in R is only possible if

either α or β is ±1.

Exercise: Conclude that 1 +
√
−5 is irreducible but not prime.

However, as we shall see below, every irreducible element in a PID is prime.

Irreducible elements in a PID

Suppose that a · b = c · d is an identity between four elements in R. Further,
suppose that a · R + c · R = R. Then we have an identity 1 = a · x + c · y.
Multiplying both sides by b, we get

b = b · a · x+ b · c · y = c · d · x+ c · b · y = c · (d · x+ b · y)

So b is a multiple of c.

Now suppose that c is an irreducible element of a PID R and suppose a · b lies
in c ·R. We wish to show that either a or b lies in c ·R.

We have an identity a · b = c · d as above. The ideal a ·R+ c ·R is principal and
hence there is an element p in R so that a ·R+ c ·R = p ·R.

So c (which is irreducible) lies in a ·R+ c ·R = p ·R. As seen above this means
that either p is a unit or p = c · u for a unit u in R. In the second case, a lies in
c ·R = p ·R.

If p is a unit, then p ·R = R and thus a ·R+ c ·R = R. We can apply the above
calculation to show that c divides b; in other words, b lies in c ·R.

So irreducible elements of a PID are prime. Hence, primes and irreducible
elements in a PID are the same.

Maximal ideals in a PID

A proper ideal P in a ring R is said to be maximal if it there are no ideals
between it and R.

If a is an element of R that does not lie in a maximal ideal P , then a ·R+P is a
larger ideal than P . Hence, by maximality of P , we must have a ·R+P = R. It
follows that there is an element b of R and an element p in P so that a · b+p = 1.
Hence, a is a unit in R/P .

Exercise: Use the above reasoning to conclude that, if P is a maximal ideal
then R/P is a field.

Exercise: Conversely, if I is an ideal in a commutative ring R and R/I is a
field, then show that I is a maximal ideal.

2



In particular, R/P is a domain and thus P is a prime ideal.

Exercise: Given a maximal ideal P , try to prove directly that if a · b lies in P
and a does not lie in P then b lies in P .

By the Noetherian property of a PID, any increasing chain of ideals in a PID
R must stop. This means that any proper ideal in R must be contained in a
maximal ideal. (Using the Axiom of Choice, it is possible to prove this for all
rings, even those without the Noetherian property.)

Note that a maximal ideal P in a PID is of the form p ·R and since P is a proper
ideal p is not a unit. If p = 0 then P is the 0 ideal and so R is a field. Thus, if
R is a PID which is not a field, then a maximal ideal P in R is of the form p ·R
where p is a prime in R.

Given any non-unit non-zero element a in a PID R, the ideal a ·R is a proper
ideal in R and hence it must be contained in a maximal ideal P which we have
seen is of the form p ·R. In other words, a is a multiple of the prime p.

Exercise: If a prime q is a multiple of a prime p in a domain R then show that
q = p · u where u is a unit. (Hint: Look at the proof that primes are irreducible.)

Exercise: If a is an element of a PID R which is not a multiple of a prime p,
then show that a ·R+ p ·R = R. (Hint: a gives a non-zero element of R/p which
is a field.)

We conclude that, in a PID which is not a field, primes generate maximal ideals
and every maximal ideal generated by a prime.

Prime power extraction

Given a non-zero element a in a domain R which can be written as a = u · b.
Further suppose that b = v · a. Then we have a = u · v · a. Since R is a domain,
this gives 1 = u · v. In other words, u is a unit; in particular, it is not a prime.

So, if a = p · b where p is a prime in R, then b is not in a · R. Put differently
a ·R is a proper subset of b ·R.

Given a non-zero element a in a PID R and a prime p in R, either a is a multiple
of p or not.

If a is a multiple of p then we put a0 = a and write a0 = p · a1. If a1 is not a
multiple of p then we stop, else we write a1 = p · a2. Continuing this way, we
write ak = p · ak+1 or ak is not a muliple of p.

As seen above, we get a strictly increasing chain of ideals ak ·R. On the other
hand, by the Noetherian property of R, this cannot happen. Hence, there is a k
for which ak is not a multiple of p.

In other words, we have shown that for every non-zero a in R and prime p in R,
there is a non-negative integer k so that a = pk · b where b is not a multiple of p.
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Factorisation

Given a non-zero element a in a PID R and p a prime in R. Suppose a = pk · b
for some k ≥ 1. As seen above this means that a ·R is a proper subset of b ·R.

On the other hand, we have also seen that if a is a non-unit in R, then a ·R is
contained in a maximal ideal and a maximal ideal is of the form p ·R for some
prime p. Thus, extracting the largest power of p from a and writing a = pk · b,
we must have k ≥ 1.

We put a0 = a, p1 = p, k1 = k and a1 = b. We have a0 = pk1
1 · a1 with k1 ≥ 1,

a1 is not a multiple of p1 and a0 ·R a proper subset of a1 ·R.

If a1 is not a unit, then we can repeat the process and find p2, k2 and a2 so that
a1 = pk2

2 · a2 with k2 ≥ 1, a2 is not a multiple of p2 (or of p1) and a1 ·R a proper
subset of a2 ·R.

We can repeat this process with a2 as long as a2 is not a unit and so on.

By the Notherian property of the PID R, we cannot have an infinite strictly
increasing chain of ideals. Hence, at some stage we must have an is a unit.

It follows that a = u · pk1
1 · · · pkn

n is a factorisation of a into prime powers upto a
unit.

Due to the presence of a unit, we do not have the familiar unique-ness of this
factorisation as in the case of integers. However, if q is a prime which divides a
then q divides the right-hand side. By the definition of primality, it must divide
one of the pi (since something which divides a unit must be a unit!). As seen
above these means that it is a unit multiple of that pi. By repeated application
of this we can show that if there are distinct primes qi and a unit v so that

vqr1
1 · · · qrm

m = a = u · pk1
1 · · · pkn

n

then n = m, and for each i between 1 and n, there is a unique s(i) so that qi is
a unit multiple of ps(i) and ri = ks(i).

4


	Primality and Factoring in PIDs
	Irreducible and Prime elements in a ring
	Irreducible elements in a PID
	Maximal ideals in a PID
	Prime power extraction
	Factorisation


