Modules over a PID

1. Show that \mathbb{Z} / n (for any n) is a principal ideal ring.
2. Show that \mathbb{Z} / n is a domain only if n is a prime.
3. Given an abelian group M and a ring R and a ring homomorphism $\phi: R \rightarrow \operatorname{End}(M)$.

Given an element a in R and an element m in M, we use the notation $a \cdot m$ for the result $\phi(a)(m)$ of applying the image of a to the element m.
(a) Use the fact that $\phi(a)$ is an endomorphism of M to show that if m^{\prime} is another element of M, then $a \cdot\left(m+m^{\prime}\right)=a \cdot m+a \cdot m^{\prime}$.
(b) Use the fact that ϕ preserves addition and the rule of addition of endomorphisms to show that $(a+b) \cdot m=a \cdot m+b \cdot m$ when b is another element of R.
(c) Use the rule of composition of endomorphisms and the fact that ϕ preserves multiplication to show that $a \cdot(b \cdot m)=(a \cdot b) \cdot m$.
(d) Use the fact that ϕ preserves multiplicative identity to show that $1 \cdot m=m$.
(e) Use the fact that ϕ preserves additive identity to show that $0 \cdot m=0$ where the latter 0 is the additive identity in M.
4. Given an operation $a \cdot m$ of elements a of a ring R on elements m of an abelian group M satisfying the identities.

- $a \cdot\left(m+m^{\prime}\right)=a \cdot m+a \cdot m^{\prime}$
- $(a+b) \cdot m=a \cdot m+b \cdot m$
- $a \cdot(b \cdot m)=(a \cdot b) \cdot m$
- $1 \cdot m=m$ and $0 \cdot m=0$

Check that $\phi(a)(m)=a \cdot m$ defines a ring homomorphism $R \rightarrow \operatorname{End}(M)$.
5. Show that $I \subset R$ is a submodule of R (as a module over R) if and only if I is an ideal of R.
6. Define an operation of a ring R on the abelian group R^{n} by $a \cdot\left(a_{1}, \ldots, a_{n}\right)=\left(a \cdot a_{1}, \ldots, a\right.$. $\left.a_{n}\right)$. Check that this operation makes R^{n} into a module over R.
7. Use the natural multiplication by integers to make \mathbb{Z} / n a module over \mathbb{Z}. Check that this is not a free module unless $n=0$!
8. Given a ring homomorphism $f: R \rightarrow S$, this makes S a module over R by defining $a \cdot b$ as $f(a) \cdot b$ for a in R and b in S.
9. Show that the endomorphisms $\operatorname{End}(\mathbb{Q})$ of the abelian group of rational numbers is (as a ring) isomorphic to \mathbb{Q}. (Hint: Identify an endomorphism by what it does to the element 1.)
10. Show that any finitely generated subgroup of the additive group of rational numbers is of the form $\mathbb{Z} \cdot(p / q)$ (i. e. the collection of all multiples of $p / q)$ for some rational number p / q.
11. (Five Stars!) Show that there is a proper subgroup of the rational numbers which is not of the form $\mathbb{Z} \cdot(p / q)$ for some rational number p / q.
12. If $f: N \rightarrow M$ is a module homomorphism, check that its image is a submodule.
13. For a module homomorphism $f: N \rightarrow M$, let $K=\{n \mid f(n)=0\}$ denote the kernel in the sense of (abelian) groups. Show that it is a submodule of N.
14. If $f: N \rightarrow M$ is a homomorphism which is both 1-1 and onto then check that its inverse $g: M \rightarrow N$ is a homomorphism.
15. Check that when R is a field, then N and M are vector spaces over R and a module homomorphism $N \rightarrow M$ is the same as a linear transformation of vector spaces.
16. Given any element m in M, show that $s \mapsto s \cdot m$ defines a module homomorphism $R \rightarrow M$ where R is considered as a module over itself in a natural way.
17. Given a collection $\left\{m_{1}, \ldots, m_{n}\right\}$ of elements of M, we can define a map $R^{n} \rightarrow M$ by

$$
\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} \cdot m_{1}+\cdots+a_{n} \cdot m_{n}
$$

Check that this defines a module homomorphism.
18. Given a abelian group M and a subgroup N, we can form the abelian group M / N whose elements consist of equivalence classes under the equivalence relation $m \simeq m^{\prime}$ if $m-m^{\prime}$ lies in N.

For $m, m^{\prime}, n, n^{\prime}$ in M, check that if $m \simeq m^{\prime}$ and $n \simeq n^{\prime}$, then $m+n \simeq m^{\prime}+n^{\prime}$.
19. Given a homomorphism $f: N \rightarrow M$, check that if $n \simeq n^{\prime}$ in $N / \operatorname{ker}(f)$, then $f(n)=$ $f\left(n^{\prime}\right)$.
20. Check that the homomorphism $f: N / \operatorname{ker}(f) \rightarrow M$ is one-to-one.
21. Let I be an ideal in a principal ideal domain R, then as a module over R it is free. (Hint: If $I=a \cdot R$, then show that the module homomorphism $R \rightarrow I$ given by $s \mapsto a \cdot s$ is one-to-one and onto.)

