Matrices Over Integers

1. Given an onto homomorphism $\mathbb{Z}^{r} \rightarrow M$, show that there are elements a_{1}, \ldots, a_{r} so that every element of M can be written as an additive combination of the elements a_{i}.
2. Given an abelian group M and an idempotent p in $\operatorname{End}(M)$. Let $N=\operatorname{ker}(p)=\{a \in$ $M: p(a)=0\}$ be the kernel of p and $L=p(M)$ be the image of p. We have a natural group homomorphism $N \times L \rightarrow M$ given by $(n, l) \mapsto n+l$. Given any a in M we can put $l=p(a)$ and $n=a-p(a)$.
(a) Check that $p(n)=0$. Moreover, check that if $p(a)$ is in N, then $p(a)=0$ so that $N \cap L=0$.
(b) Conclude that $N \times L \rightarrow M$ is an isomorphism (i.e. it is one-to-one and onto).
3. Suppose that we have a group homomorphism $f: M \rightarrow \mathbb{Z}^{r}$ for some r and that this map is onto. For each i between 1 and r we have the element e_{i} of \mathbb{Z}^{r} which has 1 in the i-th place and 0 elsewhere. Since f is onto, there is an element a_{i} of M such that $f\left(a_{i}\right)=e_{i}$. We define a homomorphism $g: \mathbb{Z}^{r} \rightarrow M$ so that $g\left(e_{i}\right)=a_{i}$.
(a) Show that $f \circ g$ is the identity endomorphism of \mathbb{Z}^{r}.
(b) Show that g is one-to-one so that $g\left(\mathbb{Z}^{r}\right)$ can be thought of as a copy of \mathbb{Z}^{r} inside M.
(c) Show that $p=g \circ f$ is an idempotent endomorphism of M.
(d) Show that M is isomorphic to $\operatorname{ker}(f) \times \mathbb{Z}^{r}$.
4. Select a 4×4 integer matrix A and reduce it to normal form using row and column reductions. Do it a few times with different matrices to make sure that all the steps outlined in the notes are used! Increase the size to 5×5 for extra practice.
