Matrices Over Integers

- 1. Given an onto homomorphism $\mathbb{Z}^r \to M$, show that there are elements a_1, \ldots, a_r so that every element of M can be written as an additive combination of the elements a_i .
- 2. Given an abelian group M and an idempotent p in End(M). Let $N = ker(p) = \{a \in M : p(a) = 0\}$ be the kernel of p and L = p(M) be the image of p. We have a natural group homomorphism $N \times L \to M$ given by $(n, l) \mapsto n + l$. Given any a in M we can put l = p(a) and n = a p(a).
 - (a) Check that p(n) = 0. Moreover, check that if p(a) is in N, then p(a) = 0 so that $N \cap L = 0$.
 - (b) Conclude that $N \times L \to M$ is an isomorphism (i.e. it is one-to-one and onto).
- 3. Suppose that we have a group homomorphism $f: M \to \mathbb{Z}^r$ for some r and that this map is *onto*. For each i between 1 and r we have the element e_i of \mathbb{Z}^r which has 1 in the i-th place and 0 elsewhere. Since f is onto, there is an element a_i of M such that $f(a_i) = e_i$. We define a homomorphism $g: \mathbb{Z}^r \to M$ so that $g(e_i) = a_i$.
 - (a) Show that $f \circ g$ is the identity endomorphism of \mathbb{Z}^r .
 - (b) Show that g is one-to-one so that $g(\mathbb{Z}^r)$ can be thought of as a copy of \mathbb{Z}^r inside M.
 - (c) Show that $p = g \circ f$ is an idempotent endomorphism of M.
 - (d) Show that M is isomorphic to $\ker(f) \times \mathbb{Z}^r$.
- 4. Select a 4×4 integer matrix A and reduce it to normal form using row and column reductions. Do it a few times with different matrices to make sure that all the steps outlined in the notes are used! Increase the size to 5×5 for extra practice.