Modules

A module M over aring R is an abelian group together with a ring homomorphism
¢: R — End(M).

Since there is a natural homomorphism from the ring of integers Z to any ring,
we see that any abelian group M is a module over Z. Thus, the notion of module
generalises the natural “action” of integers on abelian groups.

Given an element ¢ in R and an element m in M, we use the notation a - m for
the result ¢(a)(m) of applying the image of a to the element m.

Exercise: Use the fact that ¢(a) is an endomorphism of M to show that if m’
is another element of M, then a- (m+m') =a-m+a-m'.

Exercise: Use the fact that ¢ preserves addition and the rule of addition of
endomorphisms to show that (a+b)-m = a-m+b-m when b is another element
of R.

Exercise: Use the rule of composition of endomorphisms and the fact that ¢
preserves multiplication to show that a - (b-m) = (a-b) - m.

Exercise: Use the fact that ¢ preserves multiplicative identity to show that
1-m=m.

Exercise: Use the fact that ¢ preserves additive identity to show that 0-m =0
where the latter 0 is the additive identity in M.

In summary, we see that we have the identities:

Exercise: Given an operation a - m of elements a of a ring R on elements m of
an abelian group M satisfying the above identities. Check that ¢(a)(m) =a-m
defines a ring homomorphism R — End(M).

Note that in the special case where R is a field such as R = Q the field of rational
numbers, the above conditions are exactly what are used to define the notion of
a vector space over the field. Thus the notion of a module generalises to rings
the notion of a vector space over a field.

A submodule N of M is a subgroup N of M with the additional property that
for every a in R and n in N, we have a - n lies in V. In other words, N is closed
under multiplication by elements of R.



Examples

A ring R is a module over itself! We already proved this when we studied the
natural homomorphism R — End(R).

Exercise: Show that I C R is a submodule of R (as a module over R) if and
only if I is an ideal of R.

More generally, we get (for free!) modules over a ring R by considering the set
R" of n-tuples of elements of R as a module over R by defining a - (a1,...,a,) =
(a-ar,...,a-ay).

Exercise: Check that this operation makes R" into a module over R.

The module R" is called a free module over R. The basis theorem for vector
spaces over a field asserts that every vector space over a field has a basis; in other
words, it is (isomorphic to) a free module over a field. However, it is important
to note that this not true for modules over other rings.

Exercise: Use the natural multiplication by integers to make Z/n a module
over Z. This is not a free module unless n = 0!

Note that the natural multiplication is a consequence of the natural ring homo-
morphism Z — Z/n. This can be generalised as follows.

Exercise: Given a ring homomorphism f : R — S, this makes S a module over
R by defining a - b as f(a) -b for a in R and b in S.

Thus, we can think of the (field of) complex numbers C as a module (vector
space) over the (field of) real numbers R and both of these as vector spaces over
the field Q of rational numbers.

Exercise: Show that the endomorphisms End(Q) of the abelian group of rational
numbers is (as a ring) isomorphic to Q. (Hint: Identify an endomorphism by
what it does to the element 1.)

Exercise: Show that any finitely generated subgroup of the additive group of
rational numbers is of the form Z - (p/q) (i. e. the collection of all multiples of
p/q) for some rational number p/q.

Exercise: (Five Stars!) Show that there is a proper subgroup of the rational
numbers which is not of the above form.

Homomorphisms of modules

Given N and M are modules over a ring R and f : N — M is a group
homomorphism (of the underlying abelian groups), we say that f is a module
homomorphism if f(a-n) =a- f(n) for every a in R and for every n in N.

Exercise: If f: N — M is a module homomorphism, check that its image is a
submodule.



Exercise: For a module homomorphism f : N — M, let K = {n|f(n) = 0}
denote the kernel in the sense of (abelian) groups. Show that it is a submodule
of N.

As usual, we have the notion of one-to-one homomorphisms and onto homomor-
phisms. We say that f: N — M is an isomorphism if there is a homomorphism
g: M — N so that f o g is identity on M and g

circf is identity on V.

Exercise: If f: N — M is a homomorphism which is both 1-1 and onto then
check that its inverse g : M — N is a homomorphism.

Exercise: Note that when R is a field, then N and M are vector spaces over R
and module homomorphism N — M is the same as a linear transformation of
vector spaces.

Exercise: Given any element m in M, show that s — s-m defines a module
homomorphism R — M where R is considered as a module over itself in a
natural way.

We can generalise the above to many elements.

Exercise: Given a collection {mq,...,m,} of elements of M, we can define a
map R™ — M by

(a1,...,ap) a1 -my+ -+ ap-my,

Check that this defines a module homomorphism.

We say that M is finitely generated as an R-module, if there is a collection

{m1,...,my} of elements of M for which the module homomomorphism R" —
M is onto.
We say that the collection {my1,...,my} is linearly independent over R if the

homomorphism R™ — M is one-to-one.

If the homomorphism R™ — M is an isomorphism, then we say that M is
(isomorphic to) a free R-module with basis {my,...,m,}.

Quotient Modules

Given a abelian group M and a subgroup NN, we can form the abelian group
M /N whose elements consist of equivalence classes under the equivalence relation
m ~m' if m —m’ lies in N. Just to recall the ideas, it is useful to carry out the
following exercise.

Exercise: For m, m’, n, n’ in M, check that if m ~ m’ and n ~ n’, then
m+n>~m'+n'.



Now, if M is an R-module and N is an R-module, then there is a natural
R-module structure on the abelian group M/N. One way to see this is that
a-(m—m’) lies in N. Hence, we have a-m —a-m/ in N and soa-m ~a-m'.
Thus, multiplication by elements of R preserves equivalence classes.

Exercise: Given a homomorphism f : N — M, check that if n ~ n’ in N/ ker(f),
then f(n) = f(n').

Thus, we have natural map (which we also call f by abuse of notation) f :
N/ker(f) — M which has the same image as f.

Exercise: Check that the homomorphism f : N/ ker(f) — M is one-to-one.

This gives the the Noether isomorphism theorem, viz. N/ker(f) is isomorphic
(via f) to the image of f.

Through the fact that ker(f) and the image of f are R submodules and the
above calculation, this is an isomorphism of R-modules.

Sub-modules of free modules

When R is a principal ideal domain, we claim that a submodule of R" is free.
The proof is very similar to the proof that a subgroup of Z™ is a free abelian

group.

Exercise: Let I be an ideal in a principal ideal domain R, then as a module
over R it is free. (Hint: If I = a - R, then show that the module homomorphism
R — I given by s+ a - s is one-to-one and onto.)

As before, we will prove the above claim by induction on n. The above exercise
gives the proof when n = 1. Now suppose that the result is known for submodules
of R for k < n.

Let M be a sub-module of R™. Consider the intersection M N R - e; where
e1 = (1,0,...,0) is a sub-module. Now R — R - e; is an isomorphism so there is
an ideal I in R so that M N R -e; is of the form I -e;. As seen above this means
that M N R - e is of the form R - (a - e1).

On the other hand, consider the natural homomorphism f : M — R"~! given
by “dropping the first entry”

M= (81,00 80) = (52, 50)

The kernel of f is exactly M NR-e;. So, we see that M/(R-(a-e1)) is isomorphic
to a sub-module of R"~!. By the induction hypothesis this is a free module. In
other words, we can find elements ng, ..., n; of M so that f(ns),..., f(ng) give

a basis of M/(R(a-e1)).



Now, if a = 0, then R- (a-e1) = {0} in M, so that f is an isomorphism between
M and M/(R- (a-e1)). It follows that we see that {ns,...,n;} is a basis of M,
and M is free as required.

Thus we consider the case where a % 0. In this case, we put n; = a - e; and
claim that the collection {nj, ng,...,ng} is a basis of M.

To prove this we examine the corresponding homomorphism R¥ — M. Suppose
that (aq,...,ax) is such that a; -ny + -+ - + agnyg is 0. It follows that f(aq -ny +
---+agng) = 0. However, we know that f(n1) = 0, so this gives as - f(n2) +---+
ay - f(nk) = 0. Now, we know that f(ns),..., f(nk) is a basis of M/(R- (a-e1)),
so it follows that as = --- = a; = 0. Hence, the above relation simplifies to
ai -n1 = 0. This means that a; - a - e; = 0 which means that a; - a = 0. Since
a # 0 and R is a domain, this means that a; = 0 as required. In other words,

we have proved that {ny,...,nx} is linearly independent.
Next, pick an element m of M. Since {f(n2),..., f(ng)} is a basis of M/(R-nq),
there are elements ag, ..., a; in R so that f(m) =ag - f(na) +--- + ax - f(nk).

This gives the identity

fm—(az - na+--+ag-ng) =0

Since m — (ag -ng + - - - + ay, - nk) is an element of M, its image under f can only
be 0 if it lies in M N R - e;. The latter group is exactly R - ny. Hence, there is
an ap in R so that

m—(ag-no+---+ag-nk = aj-ny equivalently m = a1 +n1+2-no+---+ag-ng

Thus, {n1,...,ni} generate M as well. In conclusion, they form a basis of M
and so M is free.

Modules over a PID

If M is a finitely generated module over a principal ideal domain, then there is
a finite collection {m,...,m,} of elements of M so that the resulting homo-
morphism f: R — M is onto. By the isomorphism theorem M is isomorphic
to R"™/ker(f).

As seem above, ker(f) is a submodule of R™ and hence is a free module. In other
words, there are elements nq,...,nx of ker(f) so that the result homomorphism
RF — ker(f) is an isomorphism. Viewing the elements n; as n-tuples of elements
of R gives us a k x n matrix A. Note that the i-th row of A consists of the
element n,; written out as (4;1,...,4;,) in R".

We can see the map RF — R™ given by A as being explicitly given by



(a1,...,ar) —~
(a1 A11 +asAsq + - - arAp 1,
(a2A12 +asAs o+ arAro,. ..,
(a1 A1 +a2As .y + - arAk.n)

More simply, if we write v = (a1,...,a) as a row vector, then the right hand
side is v - A which is a row vector of length n by the usual rules of matrix
multiplication.

We can thus view any finitely generated module over a principal ideal domain
as R™/image(A) for an k x n matrix, where multiplication is done “on the right”
for row vectors.

Our earlier analysis of matrices over a principal ideal domain can now be brought
into play to simplify R™/image(A).

As proved earlier, there is an invertible k x k matrix S over R and an invertible
n X n matrix T so that S - A-T has zero entries outside the diagonal and the
diagonal entries dy,...,d; satisfy d;;+1 lies in d; - R.

Exactly as in the case of the theorem on finitely generated abelian groups, we
thus have the theorem that a finitely generated module over a principal ideal
domain has the form

R/(le) X e XR/(dkR) where di+1 €d; - R for all ¢

This “structure theorem for modules over a PID” is one of the most important
results in the subject and we will see applications of it shortly.
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