Modules

A module M over a ring R is an abelian group together with a ring homomorphism $\phi: R \rightarrow \operatorname{End}(M)$.

Since there is a natural homomorphism from the ring of integers \mathbb{Z} to any ring, we see that any abelian group M is a module over \mathbb{Z}. Thus, the notion of module generalises the natural "action" of integers on abelian groups.

Given an element a in R and an element m in M, we use the notation $a \cdot m$ for the result $\phi(a)(m)$ of applying the image of a to the element m.

Exercise: Use the fact that $\phi(a)$ is an endomorphism of M to show that if m^{\prime} is another element of M, then $a \cdot\left(m+m^{\prime}\right)=a \cdot m+a \cdot m^{\prime}$.

Exercise: Use the fact that ϕ preserves addition and the rule of addition of endomorphisms to show that $(a+b) \cdot m=a \cdot m+b \cdot m$ when b is another element of R.

Exercise: Use the rule of composition of endomorphisms and the fact that ϕ preserves multiplication to show that $a \cdot(b \cdot m)=(a \cdot b) \cdot m$.

Exercise: Use the fact that ϕ preserves multiplicative identity to show that $1 \cdot m=m$.

Exercise: Use the fact that ϕ preserves additive identity to show that $0 \cdot m=0$ where the latter 0 is the additive identity in M.

In summary, we see that we have the identities:

- $a \cdot\left(m+m^{\prime}\right)=a \cdot m+a \cdot m^{\prime}$
- $(a+b) \cdot m=a \cdot m+b \cdot m$
- $a \cdot(b \cdot m)=(a \cdot b) \cdot m$
- $1 \cdot m=m$ and $0 \cdot m=0$

Exercise: Given an operation $a \cdot m$ of elements a of a ring R on elements m of an abelian group M satisfying the above identities. Check that $\phi(a)(m)=a \cdot m$ defines a ring homomorphism $R \rightarrow \operatorname{End}(M)$.
Note that in the special case where R is a field such as $R=\mathbb{Q}$ the field of rational numbers, the above conditions are exactly what are used to define the notion of a vector space over the field. Thus the notion of a module generalises to rings the notion of a vector space over a field.
A submodule N of M is a subgroup N of M with the additional property that for every a in R and n in N, we have $a \cdot n$ lies in N. In other words, N is closed under multiplication by elements of R.

Examples

A ring R is a module over itself! We already proved this when we studied the natural homomorphism $R \rightarrow \operatorname{End}(R)$.

Exercise: Show that $I \subset R$ is a submodule of R (as a module over R) if and only if I is an ideal of R.

More generally, we get (for free!) modules over a ring R by considering the set R^{n} of n-tuples of elements of R as a module over R by defining $a \cdot\left(a_{1}, \ldots, a_{n}\right)=$ $\left(a \cdot a_{1}, \ldots, a \cdot a_{n}\right)$.
Exercise: Check that this operation makes R^{n} into a module over R.
The module R^{n} is called a free module over R. The basis theorem for vector spaces over a field asserts that every vector space over a field has a basis; in other words, it is (isomorphic to) a free module over a field. However, it is important to note that this not true for modules over other rings.

Exercise: Use the natural multiplication by integers to make \mathbb{Z} / n a module over \mathbb{Z}. This is not a free module unless $n=0$!

Note that the natural multiplication is a consequence of the natural ring homomorphism $\mathbb{Z} \rightarrow \mathbb{Z} / n$. This can be generalised as follows.

Exercise: Given a ring homomorphism $f: R \rightarrow S$, this makes S a module over R by defining $a \cdot b$ as $f(a) \cdot b$ for a in R and b in S.

Thus, we can think of the (field of) complex numbers \mathbb{C} as a module (vector space) over the (field of) real numbers \mathbb{R} and both of these as vector spaces over the field \mathbb{Q} of rational numbers.

Exercise: Show that the endomorphisms $\operatorname{End}(\mathbb{Q})$ of the abelian group of rational numbers is (as a ring) isomorphic to \mathbb{Q}. (Hint: Identify an endomorphism by what it does to the element 1.)

Exercise: Show that any finitely generated subgroup of the additive group of rational numbers is of the form $\mathbb{Z} \cdot(p / q)$ (i. e. the collection of all multiples of $p / q)$ for some rational number p / q.
Exercise: (Five Stars!) Show that there is a proper subgroup of the rational numbers which is not of the above form.

Homomorphisms of modules

Given N and M are modules over a ring R and $f: N \rightarrow M$ is a group homomorphism (of the underlying abelian groups), we say that f is a module homomorphism if $f(a \cdot n)=a \cdot f(n)$ for every a in R and for every n in N.

Exercise: If $f: N \rightarrow M$ is a module homomorphism, check that its image is a submodule.

Exercise: For a module homomorphism $f: N \rightarrow M$, let $K=\{n \mid f(n)=0\}$ denote the kernel in the sense of (abelian) groups. Show that it is a submodule of N.

As usual, we have the notion of one-to-one homomorphisms and onto homomorphisms. We say that $f: N \rightarrow M$ is an isomorphism if there is a homomorphism $g: M \rightarrow N$ so that $f \circ g$ is identity on M and g circf is identity on N.
Exercise: If $f: N \rightarrow M$ is a homomorphism which is both 1-1 and onto then check that its inverse $g: M \rightarrow N$ is a homomorphism.
Exercise: Note that when R is a field, then N and M are vector spaces over R and module homomorphism $N \rightarrow M$ is the same as a linear transformation of vector spaces.

Exercise: Given any element m in M, show that $s \mapsto s \cdot m$ defines a module homomorphism $R \rightarrow M$ where R is considered as a module over itself in a natural way.

We can generalise the above to many elements.
Exercise: Given a collection $\left\{m_{1}, \ldots, m_{n}\right\}$ of elements of M, we can define a $\operatorname{map} R^{n} \rightarrow M$ by

$$
\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} \cdot m_{1}+\cdots+a_{n} \cdot m_{n}
$$

Check that this defines a module homomorphism.
We say that M is finitely generated as an R-module, if there is a collection $\left\{m_{1}, \ldots, m_{n}\right\}$ of elements of M for which the module homomomorphism $R^{n} \rightarrow$ M is onto.

We say that the collection $\left\{m_{1}, \ldots, m_{n}\right\}$ is linearly independent over R if the homomorphism $R^{n} \rightarrow M$ is one-to-one.
If the homomorphism $R^{n} \rightarrow M$ is an isomorphism, then we say that M is (isomorphic to) a free R-module with basis $\left\{m_{1}, \ldots, m_{n}\right\}$.

Quotient Modules

Given a abelian group M and a subgroup N, we can form the abelian group M / N whose elements consist of equivalence classes under the equivalence relation $m \simeq m^{\prime}$ if $m-m^{\prime}$ lies in N. Just to recall the ideas, it is useful to carry out the following exercise.
Exercise: For $m, m^{\prime}, n, n^{\prime}$ in M, check that if $m \simeq m^{\prime}$ and $n \simeq n^{\prime}$, then $m+n \simeq m^{\prime}+n^{\prime}$.

Now, if M is an R-module and N is an R-module, then there is a natural R-module structure on the abelian group M / N. One way to see this is that $a \cdot\left(m-m^{\prime}\right)$ lies in N. Hence, we have $a \cdot m-a \cdot m^{\prime}$ in N and so $a \cdot m \simeq a \cdot m^{\prime}$. Thus, multiplication by elements of R preserves equivalence classes.

Exercise: Given a homomorphism $f: N \rightarrow M$, check that if $n \simeq n^{\prime}$ in $N / \operatorname{ker}(f)$, then $f(n)=f\left(n^{\prime}\right)$.
Thus, we have natural map (which we also call f by abuse of notation) f : $N / \operatorname{ker}(f) \rightarrow M$ which has the same image as f.
Exercise: Check that the homomorphism $f: N / \operatorname{ker}(f) \rightarrow M$ is one-to-one.
This gives the the Noether isomorphism theorem, viz. $N / \operatorname{ker}(f)$ is isomorphic (via f) to the image of f.

Through the fact that $\operatorname{ker}(f)$ and the image of f are R submodules and the above calculation, this is an isomorphism of R-modules.

Sub-modules of free modules

When R is a principal ideal domain, we claim that a submodule of R^{n} is free. The proof is very similar to the proof that a subgroup of \mathbb{Z}^{n} is a free abelian group.

Exercise: Let I be an ideal in a principal ideal domain R, then as a module over R it is free. (Hint: If $I=a \cdot R$, then show that the module homomorphism $R \rightarrow I$ given by $s \mapsto a \cdot s$ is one-to-one and onto.)

As before, we will prove the above claim by induction on n. The above exercise gives the proof when $n=1$. Now suppose that the result is known for submodules of R^{k} for $k<n$.

Let M be a sub-module of R^{n}. Consider the intersection $M \cap R \cdot e_{1}$ where $e_{1}=(1,0, \ldots, 0)$ is a sub-module. Now $R \rightarrow R \cdot e_{1}$ is an isomorphism so there is an ideal I in R so that $M \cap R \cdot e_{1}$ is of the form $I \cdot e_{1}$. As seen above this means that $M \cap R \cdot e_{1}$ is of the form $R \cdot\left(a \cdot e_{1}\right)$.

On the other hand, consider the natural homomorphism $f: M \rightarrow R^{n-1}$ given by "dropping the first entry"

$$
m=\left(s_{1}, \ldots, s_{n}\right) \mapsto\left(s_{2}, \ldots, s_{n}\right)
$$

The kernel of f is exactly $M \cap R \cdot e_{1}$. So, we see that $M /\left(R \cdot\left(a \cdot e_{1}\right)\right)$ is isomorphic to a sub-module of R^{n-1}. By the induction hypothesis this is a free module. In other words, we can find elements n_{2}, \ldots, n_{k} of M so that $f\left(n_{2}\right), \ldots, f\left(n_{k}\right)$ give a basis of $M /\left(R\left(a \cdot e_{1}\right)\right)$.

Now, if $a=0$, then $R \cdot\left(a \cdot e_{1}\right)=\{0\}$ in M, so that f is an isomorphism between M and $M /\left(R \cdot\left(a \cdot e_{1}\right)\right)$. It follows that we see that $\left\{n_{2}, \ldots, n_{k}\right\}$ is a basis of M, and M is free as required.

Thus we consider the case where $a \neq 0$. In this case, we put $n_{1}=a \cdot e_{1}$ and claim that the collection $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ is a basis of M.
To prove this we examine the corresponding homomorphism $R^{k} \rightarrow M$. Suppose that $\left(a_{1}, \ldots, a_{k}\right)$ is such that $a_{1} \cdot n_{1}+\cdots+a_{k} n_{k}$ is 0 . It follows that $f\left(a_{1} \cdot n_{1}+\right.$ $\left.\cdots+a_{k} n_{k}\right)=0$. However, we know that $f\left(n_{1}\right)=0$, so this gives $a_{2} \cdot f\left(n_{2}\right)+\cdots+$ $a_{k} \cdot f\left(n_{k}\right)=0$. Now, we know that $f\left(n_{2}\right), \ldots, f\left(n_{k}\right)$ is a basis of $M /\left(R \cdot\left(a \cdot e_{1}\right)\right)$, so it follows that $a_{2}=\cdots=a_{k}=0$. Hence, the above relation simplifies to $a_{1} \cdot n_{1}=0$. This means that $a_{1} \cdot a \cdot e_{1}=0$ which means that $a_{1} \cdot a=0$. Since $a \neq 0$ and R is a domain, this means that $a_{1}=0$ as required. In other words, we have proved that $\left\{n_{1}, \ldots, n_{k}\right\}$ is linearly independent.

Next, pick an element m of M. Since $\left\{f\left(n_{2}\right), \ldots, f\left(n_{k}\right)\right\}$ is a basis of $M /\left(R \cdot n_{1}\right)$, there are elements a_{2}, \ldots, a_{k} in R so that $f(m)=a_{2} \cdot f\left(n_{2}\right)+\cdots+a_{k} \cdot f\left(n_{k}\right)$. This gives the identity

$$
f\left(m-\left(a_{2} \cdot n_{2}+\cdots+a_{k} \cdot n_{k}\right)\right)=0
$$

Since $m-\left(a_{2} \cdot n_{2}+\cdots+a_{k} \cdot n_{k}\right)$ is an element of M, its image under f can only be 0 if it lies in $M \cap R \cdot e_{1}$. The latter group is exactly $R \cdot n_{1}$. Hence, there is an a_{1} in R so that
$m-\left(a_{2} \cdot n_{2}+\cdots+a_{k} \cdot n_{k}=a_{1} \cdot n_{1}\right.$ equivalently $m=a_{1}+n_{1}+2 \cdot n_{2}+\cdots+a_{k} \cdot n_{k}$

Thus, $\left\{n_{1}, \ldots, n_{k}\right\}$ generate M as well. In conclusion, they form a basis of M and so M is free.

Modules over a PID

If M is a finitely generated module over a principal ideal domain, then there is a finite collection $\left\{m_{1}, \ldots, m_{n}\right\}$ of elements of M so that the resulting homomorphism $f: R^{n} \rightarrow M$ is onto. By the isomorphism theorem M is isomorphic to $R^{n} / \operatorname{ker}(f)$.

As seem above, $\operatorname{ker}(f)$ is a submodule of R^{n} and hence is a free module. In other words, there are elements n_{1}, \ldots, n_{k} of $\operatorname{ker}(f)$ so that the result homomorphism $R^{k} \rightarrow \operatorname{ker}(f)$ is an isomorphism. Viewing the elements n_{i} as n-tuples of elements of R gives us a $k \times n$ matrix A. Note that the i-th row of A consists of the element n_{i} written out as $\left(A_{i, 1}, \ldots, A_{i, n}\right)$ in R^{n}.
We can see the map $R^{k} \rightarrow R^{n}$ given by A as being explicitly given by

$$
\begin{aligned}
\left(a_{1}, \ldots, a_{k}\right) \mapsto & \\
\left(a_{1} A_{1,1}+a_{2} A_{2,1}+\cdots\right. & a_{k} A_{k, 1} \\
\left(a_{2} A_{1,2}+a_{2} A_{2,2}+\cdots\right. & a_{k} A_{k, 2}, \ldots, \\
& \left(a_{1} A_{1, n}+a_{2} A_{2, n}+\cdots a_{k} A_{k, n}\right)
\end{aligned}
$$

More simply, if we write $v=\left(a_{1}, \ldots, a_{k}\right)$ as a row vector, then the right hand side is $v \cdot A$ which is a row vector of length n by the usual rules of matrix multiplication.

We can thus view any finitely generated module over a principal ideal domain as $R^{n} / \operatorname{image}(A)$ for an $k \times n$ matrix, where multiplication is done "on the right" for row vectors.

Our earlier analysis of matrices over a principal ideal domain can now be brought into play to simplify $R^{n} / \operatorname{image}(A)$.

As proved earlier, there is an invertible $k \times k$ matrix S over R and an invertible $n \times n$ matrix T so that $S \cdot A \cdot T$ has zero entries outside the diagonal and the diagonal entries d_{1}, \ldots, d_{k} satisfy d_{i+1} lies in $d_{i} \cdot R$.

Exactly as in the case of the theorem on finitely generated abelian groups, we thus have the theorem that a finitely generated module over a principal ideal domain has the form

$$
R /\left(d_{1} \cdot R\right) \times \cdots \times R /\left(d_{k} \cdot R\right) \text { where } d_{i+1} \in d_{i} \cdot R \text { for all } i
$$

This "structure theorem for modules over a PID" is one of the most important results in the subject and we will see applications of it shortly.

