
Modules

AmoduleM over a ring R is an abelian group together with a ring homomorphism
φ : R→ End(M).

Since there is a natural homomorphism from the ring of integers Z to any ring,
we see that any abelian group M is a module over Z. Thus, the notion of module
generalises the natural “action” of integers on abelian groups.

Given an element a in R and an element m in M , we use the notation a ·m for
the result φ(a)(m) of applying the image of a to the element m.

Exercise: Use the fact that φ(a) is an endomorphism of M to show that if m′
is another element of M , then a · (m+m′) = a ·m+ a ·m′.

Exercise: Use the fact that φ preserves addition and the rule of addition of
endomorphisms to show that (a+ b) ·m = a ·m+ b ·m when b is another element
of R.

Exercise: Use the rule of composition of endomorphisms and the fact that φ
preserves multiplication to show that a · (b ·m) = (a · b) ·m.

Exercise: Use the fact that φ preserves multiplicative identity to show that
1 ·m = m.

Exercise: Use the fact that φ preserves additive identity to show that 0 ·m = 0
where the latter 0 is the additive identity in M .

In summary, we see that we have the identities:

• a · (m+m′) = a ·m+ a ·m′
• (a+ b) ·m = a ·m+ b ·m
• a · (b ·m) = (a · b) ·m
• 1 ·m = m and 0 ·m = 0

Exercise: Given an operation a ·m of elements a of a ring R on elements m of
an abelian group M satisfying the above identities. Check that φ(a)(m) = a ·m
defines a ring homomorphism R→ End(M).

Note that in the special case where R is a field such as R = Q the field of rational
numbers, the above conditions are exactly what are used to define the notion of
a vector space over the field. Thus the notion of a module generalises to rings
the notion of a vector space over a field.

A submodule N of M is a subgroup N of M with the additional property that
for every a in R and n in N , we have a · n lies in N . In other words, N is closed
under multiplication by elements of R.
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Examples

A ring R is a module over itself! We already proved this when we studied the
natural homomorphism R→ End(R).

Exercise: Show that I ⊂ R is a submodule of R (as a module over R) if and
only if I is an ideal of R.

More generally, we get (for free!) modules over a ring R by considering the set
Rn of n-tuples of elements of R as a module over R by defining a · (a1, . . . , an) =
(a · a1, . . . , a · an).

Exercise: Check that this operation makes Rn into a module over R.

The module Rn is called a free module over R. The basis theorem for vector
spaces over a field asserts that every vector space over a field has a basis; in other
words, it is (isomorphic to) a free module over a field. However, it is important
to note that this not true for modules over other rings.

Exercise: Use the natural multiplication by integers to make Z/n a module
over Z. This is not a free module unless n = 0!

Note that the natural multiplication is a consequence of the natural ring homo-
morphism Z→ Z/n. This can be generalised as follows.

Exercise: Given a ring homomorphism f : R→ S, this makes S a module over
R by defining a · b as f(a) · b for a in R and b in S.

Thus, we can think of the (field of) complex numbers C as a module (vector
space) over the (field of) real numbers R and both of these as vector spaces over
the field Q of rational numbers.

Exercise: Show that the endomorphisms End(Q) of the abelian group of rational
numbers is (as a ring) isomorphic to Q. (Hint: Identify an endomorphism by
what it does to the element 1.)

Exercise: Show that any finitely generated subgroup of the additive group of
rational numbers is of the form Z · (p/q) (i. e. the collection of all multiples of
p/q) for some rational number p/q.

Exercise: (Five Stars!) Show that there is a proper subgroup of the rational
numbers which is not of the above form.

Homomorphisms of modules

Given N and M are modules over a ring R and f : N → M is a group
homomorphism (of the underlying abelian groups), we say that f is a module
homomorphism if f(a · n) = a · f(n) for every a in R and for every n in N .

Exercise: If f : N →M is a module homomorphism, check that its image is a
submodule.
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Exercise: For a module homomorphism f : N → M , let K = {n|f(n) = 0}
denote the kernel in the sense of (abelian) groups. Show that it is a submodule
of N .

As usual, we have the notion of one-to-one homomorphisms and onto homomor-
phisms. We say that f : N →M is an isomorphism if there is a homomorphism
g : M → N so that f ◦ g is identity on M and g
circf is identity on N .

Exercise: If f : N →M is a homomorphism which is both 1-1 and onto then
check that its inverse g : M → N is a homomorphism.

Exercise: Note that when R is a field, then N and M are vector spaces over R
and module homomorphism N →M is the same as a linear transformation of
vector spaces.

Exercise: Given any element m in M , show that s 7→ s ·m defines a module
homomorphism R → M where R is considered as a module over itself in a
natural way.

We can generalise the above to many elements.

Exercise: Given a collection {m1, . . . ,mn} of elements of M , we can define a
map Rn →M by

(a1, . . . , an) 7→ a1 ·m1 + · · ·+ an ·mn

Check that this defines a module homomorphism.

We say that M is finitely generated as an R-module, if there is a collection
{m1, . . . ,mn} of elements of M for which the module homomomorphism Rn →
M is onto.

We say that the collection {m1, . . . ,mn} is linearly independent over R if the
homomorphism Rn →M is one-to-one.

If the homomorphism Rn → M is an isomorphism, then we say that M is
(isomorphic to) a free R-module with basis {m1, . . . ,mn}.

Quotient Modules

Given a abelian group M and a subgroup N , we can form the abelian group
M/N whose elements consist of equivalence classes under the equivalence relation
m ' m′ if m−m′ lies in N . Just to recall the ideas, it is useful to carry out the
following exercise.

Exercise: For m, m′, n, n′ in M , check that if m ' m′ and n ' n′, then
m+ n ' m′ + n′.
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Now, if M is an R-module and N is an R-module, then there is a natural
R-module structure on the abelian group M/N . One way to see this is that
a · (m−m′) lies in N . Hence, we have a ·m− a ·m′ in N and so a ·m ' a ·m′.
Thus, multiplication by elements of R preserves equivalence classes.

Exercise: Given a homomorphism f : N →M , check that if n ' n′ inN/ ker(f),
then f(n) = f(n′).

Thus, we have natural map (which we also call f by abuse of notation) f :
N/ ker(f)→M which has the same image as f .

Exercise: Check that the homomorphism f : N/ ker(f)→M is one-to-one.

This gives the the Noether isomorphism theorem, viz. N/ ker(f) is isomorphic
(via f) to the image of f .

Through the fact that ker(f) and the image of f are R submodules and the
above calculation, this is an isomorphism of R-modules.

Sub-modules of free modules

When R is a principal ideal domain, we claim that a submodule of Rn is free.
The proof is very similar to the proof that a subgroup of Zn is a free abelian
group.

Exercise: Let I be an ideal in a principal ideal domain R, then as a module
over R it is free. (Hint: If I = a ·R, then show that the module homomorphism
R→ I given by s 7→ a · s is one-to-one and onto.)

As before, we will prove the above claim by induction on n. The above exercise
gives the proof when n = 1. Now suppose that the result is known for submodules
of Rk for k < n.

Let M be a sub-module of Rn. Consider the intersection M ∩ R · e1 where
e1 = (1, 0, . . . , 0) is a sub-module. Now R→ R · e1 is an isomorphism so there is
an ideal I in R so that M ∩R · e1 is of the form I · e1. As seen above this means
that M ∩R · e1 is of the form R · (a · e1).

On the other hand, consider the natural homomorphism f : M → Rn−1 given
by “dropping the first entry”

m = (s1, . . . , sn) 7→ (s2, . . . , sn)

The kernel of f is exactlyM ∩R ·e1. So, we see thatM/(R ·(a ·e1)) is isomorphic
to a sub-module of Rn−1. By the induction hypothesis this is a free module. In
other words, we can find elements n2, . . . , nk of M so that f(n2), . . . , f(nk) give
a basis of M/(R(a · e1)).

4



Now, if a = 0, then R · (a · e1) = {0} in M , so that f is an isomorphism between
M and M/(R · (a · e1)). It follows that we see that {n2, . . . , nk} is a basis of M ,
and M is free as required.

Thus we consider the case where a 6= 0. In this case, we put n1 = a · e1 and
claim that the collection {n1, n2, . . . , nk} is a basis of M .

To prove this we examine the corresponding homomorphism Rk →M . Suppose
that (a1, . . . , ak) is such that a1 · n1 + · · ·+ aknk is 0. It follows that f(a1 · n1 +
· · ·+aknk) = 0. However, we know that f(n1) = 0, so this gives a2 ·f(n2) + · · ·+
ak · f(nk) = 0. Now, we know that f(n2), . . . , f(nk) is a basis of M/(R · (a · e1)),
so it follows that a2 = · · · = ak = 0. Hence, the above relation simplifies to
a1 · n1 = 0. This means that a1 · a · e1 = 0 which means that a1 · a = 0. Since
a 6= 0 and R is a domain, this means that a1 = 0 as required. In other words,
we have proved that {n1, . . . , nk} is linearly independent.

Next, pick an element m of M . Since {f(n2), . . . , f(nk)} is a basis of M/(R ·n1),
there are elements a2, . . . , ak in R so that f(m) = a2 · f(n2) + · · ·+ ak · f(nk).
This gives the identity

f(m− (a2 · n2 + · · ·+ ak · nk)) = 0

Since m− (a2 ·n2 + · · ·+ ak ·nk) is an element of M , its image under f can only
be 0 if it lies in M ∩R · e1. The latter group is exactly R · n1. Hence, there is
an a1 in R so that

m−(a2 ·n2 + · · ·+ak ·nk = a1 ·n1 equivalently m = a1 +n1 +2 ·n2 + · · ·+ak ·nk

Thus, {n1, . . . , nk} generate M as well. In conclusion, they form a basis of M
and so M is free.

Modules over a PID

If M is a finitely generated module over a principal ideal domain, then there is
a finite collection {m1, . . . ,mn} of elements of M so that the resulting homo-
morphism f : Rn →M is onto. By the isomorphism theorem M is isomorphic
to Rn/ ker(f).

As seem above, ker(f) is a submodule of Rn and hence is a free module. In other
words, there are elements n1, . . . , nk of ker(f) so that the result homomorphism
Rk → ker(f) is an isomorphism. Viewing the elements ni as n-tuples of elements
of R gives us a k × n matrix A. Note that the i-th row of A consists of the
element ni written out as (Ai,1, . . . , Ai,n) in Rn.

We can see the map Rk → Rn given by A as being explicitly given by
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(a1, . . . , ak) 7→
(a1A1,1 + a2A2,1 + · · · akAk,1,

(a2A1,2 + a2A2,2 + · · · akAk,2, . . . ,

(a1A1,n + a2A2,n + · · · akAk,n)

More simply, if we write v = (a1, . . . , ak) as a row vector, then the right hand
side is v · A which is a row vector of length n by the usual rules of matrix
multiplication.

We can thus view any finitely generated module over a principal ideal domain
as Rn/image(A) for an k× n matrix, where multiplication is done “on the right”
for row vectors.

Our earlier analysis of matrices over a principal ideal domain can now be brought
into play to simplify Rn/image(A).

As proved earlier, there is an invertible k × k matrix S over R and an invertible
n× n matrix T so that S ·A · T has zero entries outside the diagonal and the
diagonal entries d1, . . . , dk satisfy di+1 lies in di ·R.

Exactly as in the case of the theorem on finitely generated abelian groups, we
thus have the theorem that a finitely generated module over a principal ideal
domain has the form

R/(d1 ·R)× · · · ×R/(dk ·R) where di+1 ∈ di ·R for all i

This “structure theorem for modules over a PID” is one of the most important
results in the subject and we will see applications of it shortly.
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