
Principal Rings

As mentioned in the section on Euclidean rings, one can use Euclid’s division
algorithm in such rings to calculate the greatest common divisor of two elements
in such rings. This can be taken a step further.

Exactly as in the case of integers one can show that every ideal consists of all
multiples of a single element as follows. If the ideal is {0} then it consists of all
multiples of 0. On the other hand, if there is a non-zero element in I, then take
a non-zero element a in I which has the smallest size using the d function. (For
example, if R is the collection of polynomials over a field, then take the non-zero
element of I of least degree). Given any other element b of I, we can divide b by
a and write b = q · a + r where r has smaller size than a. However, it is clear
that r = b− q · a lies in I, hence by assumption on the size of a, we must have
r = 0. Thus, we see that every element of I is in R · a.

Thus, Euclidean rings are examples of principal ideal rings; these are commutative
rings R so that every ideal I in R is of the form a ·R; in other words, the ideal
I consists of all multiples of a fixed element a of it.

In the spirit of generalisation, we can ask whether the reduction of matrices can
be generalised to such rings. Indeed we can as we shall show below.

A domain is a ring in which 0 is the only zero-divisor. We note that the ring of
integers and the ring of polynomials with coefficients in a field are domains.

A P.I.D. or a principal ideal domain is a ring which is both, a domain and a
principal ideal ring.

Exercise: Show that Z/n (for any n) is a principal ideal ring.

Exercise: Show that Z/n is a domain only if n is a prime.

Matrix Reduction over a PID

We would like to show that matrices over a PID R can also be reduced to normal
form as with the ring of integers and more generally, with Euclidean rings.

One difficulty that we have is that we can’t use row/column reduction since we
no longer have a method for division.

We note that a row operation involves left multiplication by a matrix whose
determinant is 1. Similarly, column reduction involves right multiplication by a
matrix whose determinant is 1. Thus, we can try to show that given a matrix A
over a PID, there are matrices S and T , each of determinant 1 so that S ·A · T
is in normal form. Since matrices of determinant 1 are units in Mk(R), we can
also allow more general invertible matrices in matrix rings to play the roles of S
and T .
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Recalling the method used earlier, we had a row (or column) of two entries a
and b and we had to find a way to replace one of them by the greatest common
divisor using multiplication by a matrix of determinant 1.

Since a ·R + b ·R is a principal ideal (since R is a PID), we know that this is of
the form c ·R for a suitable c. We assume that a is not 0 so that c too is not 0.
We have a relation of the form a · x + b · y = c. Moreover, we also have a = c ·m
and b = c · n. It follows that

c · (m · x + n · y) = c or equivalently c · (m · x + n · y − 1) = 0

Now, since c 6= 0 it is not a zero-divisor on R, so we must have m · x + n · y = 1.
We also note that n · a = m · b. This gives us the identity

(
x y
−n m

)
·
(

a
b

)
=

(
c
0

)
This is the key step in reducing matrices to normal form as it replaces a pair of
entries a and b in a particular column to the greatest common divisor c (of a
and b) and 0 via left multiplication by a suitable matrix of determinant 1. A
similar approach leads to a suitable matrix for right multiplication when one
has a matrix with a pair of entries in a particular row.

The algorithm for matrix reduction similar to the one described for the Euclidean
case can now be followed to perform matrix reduction.

However, there is one further catch. In the case of Euclidean rings, we can be
sure that our algorithm terminates (even with Step 4) since any new entries
being created are of smaller size. Since we no longer have a size function, this
way of proving termination is not available to us. Instead we need the following
result.

Noetherian-ness of PIDs: Given an sequence of ideals Ii, with Ii ⊂ Ii+1 in a
PID, there is a k so that Ik = Ik+r for all r ≥ 1.

Using this result, the infinite descent argument can be applied again to argue
that the ideals generated by the matrix entries cannot keep getting bigger. It
follows easily that the algorithm terminates.

To prove the Noetherian property, we put I to be the union of the ideals Ii.
Given a and b in I, there is an i so that Ii contains a and there is a j so that
Ij contains b. If k is the maximum of i and j, then both a and b lie in Ik. It
follows that a + b lies in Ik since the latter is an ideal. Thus I is closed under
addition. Moreover if c is any element of R, the a · c lies in Ik since the latter is
an ideal. Thus I is closed under multiplication by elements of R. In other words,
I is an ideal.
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Since R is a PID, the ideal I must be of the form a ·R for some a in R. In that
case a lies in I and hence lies in Ik for some k. Then it follows that Ik = I = Ik+r

for all r ≥ 1.

We have thus completed the proof of that a matrix over a PID can be reduced
to normal form. Note that the proof is abstract in the sense that it does not
give us a way to construct the greatest common divisor of two elements.
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