Solutions to First Mid-Sem Exam

1. Give one example of the following types of elements in the following rings, or indicate that there is no such element. (0 denotes the additive identity of the ring, 1 denotes the multiplicative identity and -1 denotes the additive inverse of 1 .)
(a) An idempotent element in $\mathbb{Z} / 42$ which is different from 0 or 1.

Solution: The element 7 has the property that $7^{2}=7$ in $\mathbb{Z} / 42$.
(b) An idempotent element in $M_{2}(\mathbb{Z})$ which is different from 0 or 1 .

Solution: The element $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ has the property that $A^{2}=A$ in $M_{2}(\mathbb{Z})$.
(c) An idempotent element in \mathbb{Z} which is different from 0 or 1.

Solution: There is no such element.
(d) A unit in $\mathbb{Z} / 42$ which is different from 1.

Solution: The element 5 has the property that $5 \cdot 17=1=17 \cdot 5$ in $\mathbb{Z} / 42$.
(e) A unit in $M_{2}(\mathbb{Z})$ which is different from 1 or -1 .

Solution: The element $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ has the property that $A^{2}=1$ in $M_{2}(\mathbb{Z})$.
(f) A unit in \mathbb{Z} which is different from 1 or -1 .

Solution: There is no such element.
(g) A nilpotent element in $\mathbb{Z} / 42$ which is different from 0 .

Solution: There is no such element.
(h) A nilpotent element in $M_{2}(\mathbb{Z})$ which is different from 0.

Solution: The element $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ has the property that $A^{2}=0$ in $M_{2}(\mathbb{Z})$.
(i) A nilpotent element in \mathbb{Z} which is different from 0 .

Solution: There is no such element.
(1 mark) (j) A zero-divisor in $\mathbb{Z} / 42$ which is different from 0.
Solution: The element 2 has the property that $2 \cdot 21=0$ in $\mathbb{Z} / 42$ and 21 is not zero in $\mathbb{Z} / 42$.
(1 mark) 2. Give an example of a ring where 1 is its own additive inverse or indicate that there is no such ring.

Solution: The ring $\mathbb{Z} / 2$.
3. We note that $S=\mathbb{Z} / 2 \times \mathbb{Z} / 3$ is a ring with component-wise addition and multiplication. Consider the element $a=(1,2)$ in S.
(2 marks) (a) Consider the map $k \mapsto k \cdot a$ from $\mathbb{Z} / 6$ to S. Is this a group isomorphism? Is this a ring isomorphism?

Solution: This is a group isomorphism since a is an element of order 6 and S has 6 elements.
This is not a ring isomorphism since 1 maps to $(1,2)$ which is not the multiplicative identity of S.
(b) Are the rings S and $\mathbb{Z} / 6$ isomorphic?

Solution: The element $b=(1,1)$ is the multiplicative identity of S and it is also an element of order 6 . Hence, the map $k \mapsto k \cdot b$ is a ring isomorphism.
(3 marks) 4. In a commutative ring R we are given an element a that satisfies $a^{2}+1=0$ and an element b so that $b^{2}+b^{2}=1$, show that if $c=(1+a) \cdot b$, then $c^{2}=a$.

Solution:

$$
\begin{aligned}
c^{2} & =((1+a) \cdot b) \cdot((1+a) \cdot a) \\
& =(1+a)^{2} \cdot b^{2}
\end{aligned}
$$

using associative and commutative laws
for multiplication
$\left.=\left(1+a+a+a^{2}\right)\right) \cdot b^{2}$
using distributive law and associative law for addition and multiplicative identity
$=(a+a) \cdot b^{2}$
using commutative law for addition
and $1+a^{2}=0$ and additive identity
$=a \cdot b^{2}+a \cdot b^{2}$
using distributive law
$=a \cdot\left(b^{2}+b^{2}\right)$
using distributive law
$=a \cdot 1$
using the equation $b^{2}+b^{2}=1$
$=a$
using the multiplicative identity
(3 marks) 5. In a ring R, let 0 denote the additive identity and a denote an arbitrary element of R. By only using the axioms for a ring show that $0 \cdot a=0$. In each step make it clear which axiom you are using.

Solution:

$$
0=0+0
$$

using additive identity
$0 \cdot a=(0+0) \cdot a$
multiplying both sides by a
$=0 \cdot a+0 \cdot a$
using distributive law
$0 \cdot a+b=(0 \cdot a+0 \cdot a)+b$
adding the additive inverse b of $0 \cdot a$
$0=0 \cdot a+(0 \cdot a+b)$
using the additive inverse propery
and the associative law
$0=0 \cdot a$
using the additive inverse propery
and the additive identity

