## Solutions to Assignment 4

1. Given that $f$ and $g$ are endomorphisms of an abelian group $M$. Define $h(a)=f(a)+g(a)$ for every $a$ in $M$. Check that $h$ is an endomorphism of the abelian group $M$.

Solution: We check that

$$
h(a+b)=f(a+b)+g(a+b)=(f(a)+f(b))+(g(a)+g(b))
$$

We now use commutativity and associativity of the operation to get

$$
h(a+b)=(f(a)+g(a))+(f(b)+g(b))=h(a)+h(b)
$$

This shows that $h$ is an endomorphism. (We can easily check that $h(0)=0$ and $h(-a)=-h(a)$ by the same method.)
2. Given that $f$ and $g$ are endomorphisms of an abelian group $M$. Define $h(a)=f(g(a))$ for every $a$ in $M$. Check that $h$ is an endomorphism of the abelian group $M$.

Solution: We check that

$$
h(a+b)=f(g(a+b))=f(g(a)+g(b))=f(g(a))+f(g(b))=h(a)+h(b)
$$

We similarly check that $h(0)=0$ and $h(-a)=-h(a)$.
3. The $\underline{0}$ endomorphism of an abelian group $M$ sends every element of $M$ to 0 . The $\underline{1}$ endomorphism of $M$ is the identity map of $M$ to itself. With the above definitions of addition and multiplications, check that $\operatorname{End}(M)$ is a ring.

Solution: The associativity of addition and multiplication is easily checked. Let us check the distributive law.

$$
\begin{aligned}
(f \circ(g+h))(a)=f((g+h)(a))=f & (g(a)+h(a))=f(g(a))+f(h(a))= \\
& (f \circ g)(a)+(f \circ h)(a)=(f \circ g+f \circ h)(a)
\end{aligned}
$$

The additive and multiplicative identities are similarly checked.
4. Consider the natural ring homomorphism $\eta: \mathbb{Z} \rightarrow \operatorname{End}(M)$ given that the latter is a ring. Describe the element $\eta(3)$ and $\eta(-2)$. How do you prove that this description is correct?

Solution: The element $\eta(3)$ maps every element $a$ of $M$ to the element $a+a+a$. This is because $\eta(1)$ is the identity endomorphism of $M$, and $\eta(3)=\eta(1)+\eta(1)+\eta(1)$. The element $\eta(-2)$ maps every element $a$ of $M$ to the element $(-a)+(-a)$. This is because $\eta(-1)$ sends each element of $M$ to its additive inverse, so that $\eta(0)=$ $\eta(1)+\eta(-1)$ sends each element of $M$ to the 0 element of $M$. It follows that $\eta(-2)=\eta(-1)+\eta(-1)$ is as described.
5. Use the (left) distributive law in a ring $R$ to show that $x \mapsto a \cdot x$ is an endomorphism of $(R,+)$.

Solution: The left distributive law for $R$ says that if $a, x$ and $y$ are elements of $R$, then

$$
a \cdot(x+y)=a \cdot x+a \cdot y
$$

Moreover, $a \cdot 0=a \cdot(0+0)=a \cdot 0+a \cdot 0$, so by adding $-(a \cdot 0)$ to both sides we see that $a \cdot 0=0$. Next,

$$
a \cdot x+a \cdot(-x)=a \cdot(x+(-x))=a \cdot 0=0
$$

shows that $a \cdot(-x)==(a \cdot x)$, so that $a$ preserves additive inverses.
6. Call the map in the previous exercise $\ell_{a}$. Use associativity of multiplication in $R$ to show that $\ell_{a} \circ \ell_{b}=\ell_{a \cdot b}$.

Solution: We use associativity at the third step to get

$$
\left(\ell_{a} \circ \ell_{b}\right)(x)=\ell_{a}\left(\ell_{b}(x)\right)=a \cdot(b \cdot x)=(a \cdot b) \cdot x=\left(\ell_{a \cdot b}\right)(x)
$$

7. Use the right distributive law in $R$ to show that $\ell_{a+b}=\ell_{a}+\ell_{b}$ where the right-hand side is addition of endomorphisms of $(R,+)$.

Solution: We use associativity at the third step to get

$$
\left(\ell_{a+b}\right)(x)=(a+b) \cdot x=a \cdot x+b \cdot x=\ell_{a}(x)+\ell+b(x)=\left(\ell_{a}+\ell_{b}\right)(x)
$$

8. Use the multiplicative identity law to show that $\ell_{1}$ is the identity endomorphism of $(R,+)$. Similarly, show that $\ell_{0}$ is the constant endomorphism that sends every element to 0 .

## Solution:

$$
\left(\ell_{1}\right)(a)=1 \cdot a=a
$$

Secondly, we have

$$
\left(\ell_{0}\right)(a)=0 \cdot a=0
$$

9. If $p$ is any integer and $a$ an element of an abelian group $M$, then show that the order of $p \cdot a$ divides the order $m$ of $a$.

Solution: If the order of $a$ is $n$, then the subgroup of $M$ which consists of integer multiples of $a$ (i. e. the sub-group generated by $a$ ) is isomorphic to the cyclic group $\mathbb{Z} / n$ via the map that sends $p$ to $p \cdot a$.
The order of every element $p \cdot a$ of this subgroup divides the order $n$ if this subgroup.
10. In the above situation, if $p$ and $m$ have no common factor, then show that the order of $p \cdot a$ is $m$.

Solution: If $p$ and $n$ have no common factor, then there are integers $A$ and $B$ so that $p A+n B=1$. As $a$ has order $n$, we see that $A \cdot(p \cdot a)+B \cdot(n \cdot a)=1 \cdot a=a$. It follows that $A \cdot(p \cdot a)=a$.
This means that the order of $a$ divides the order of $p \cdot a$ and the order $p \cdot a$ divides the order of $a$. Hence these are both of the same order.
11. In the situation where $k$ divides the order $m$ of $a$, show that the element $k \cdot a$ has order exactly $m / k$.

Solution: It is clear that $(m / k) \cdot(k \cdot a)=m \cdot a=0$. On the other hand, write $m=l \cdot k$ and suppose $p \cdot(k \cdot a)=0$. Then, $m$ divides $p \cdot k$ or $p \cdot k=q \cdot m$ for some integer $q$. This gives $p \cdot k=q \cdot l \cdot k$. Cancelling $k$, we have $p=q \cdot l$; in other words, $l$ divides $q$. It follows that $l$ is the order of $k \cdot a$.
12. Combine the above two exercises to show that if the order of $p \cdot a$ is $m / k$ where $k$ the greatest common divisor of $p$ and $m$.

Solution: We write $p=l \cdot k$ where $k$ is as above and $l$ and $m$ have no common factor. Then $l$ and $k$ also have no common factor. It follows that $k \cdot a$ has order $m / k$ as above and that $l \cdot(k \cdot a)$ has the same order as that of $k \cdot a$.
13. Given two elements $a$ and $b$ in an abelian group $M$ with orders $m$ and $n$ respectively. If $m$ and $n$ have no common factor then show that if some multiple $p \cdot a$ equals some multiple $q \cdot b$ then both of these are the 0 element of $M$. (Hint: The order of $p \cdot a$ is a divisor of $m$ and that of $q \cdot b$ is a divisor of $n$.)

Solution: The order of $p \cdot a$ is a divisor of $m$ and the order of $q \cdot b$ is a divisor of $n$. As $m$ and $n$ have greatest common divisor 1 , it follows that the order of $p \cdot a=q \cdot b$ is 1 . In other words, this is the 0 element.
14. In the above situation, if $m$ and $n$ have no common factor then the order of $a+b$ is $m \cdot n$.

Solution: If $p \cdot(a+b)=0$, then $p \cdot a=(-p) \cdot b$. It follows that both of these must be 0 . In other words, $p$ is divisible by the order $n$ of $a$ and $(-p)$ is divisible by the order $m$ of $b$. It follows that $p$ is divisible by $m n$. Conversely, we check that $(m n) \cdot(a+b)=0$.
15. Given positive integers $m$ and $n$, show that there is a divisor $k$ of $m$ and a divisor $l$ of $n$ so that:

1. $k$ and $l$ have no common factor.
2. The least common multiple of $m$ and $n$ is $k \cdot l$.
(Hint: Let $k$ be product of those prime powers dividing $m$ that are the same as the prime powers dividing the least common multiple of $m$ and $n$. Let $l$ be the product of the remaining prime powers dividing the l.c.m. of $m$ and $n$.)

Solution: Let $k$ as in the hint, be the product of those prime powers dividing $m$ which are the same as those dividing the least common multiple of $m$ and $n$. Then $m / k$ divides $l=L / k$ where $L$ is the least common multiple of $m$ and $n$. Then $k$ and $l$ have no common factor and $k \cdot l=L$.
16. With $a, b$ in $M$ as above and $m, n, k$ and $l$ positive integers as above, show that $(m / k) \cdot a+(n / l) \cdot b$ has order equal to the least common multiple of the $m$ and $n$.

Solution: As seen above, $(m / k) \cdot a$ has order $k$ and $(n / l) \cdot b$ has order $l$. Since $l$ and $k$ are co-prime, we see that $(m / k) \cdot a+(n / l) \cdot b$ has order $l \cdot k=L$, the least common multiple of $m$ and $n$.
17. (Starred) Given $a$ and $b$ in $M$ of order $m$ and $n$ respectively, show that the order of any element of the form $p \cdot a+q \cdot b$ divides the least common multiple of $m$ and $n$.
18. Check that the order of every non-zero element of $\mathbb{Z} / 3 \times \mathbb{Z} / 3$ is 3 .

Solution: On the one hand, if $(a, b) \neq(0,0)$ then its order is bigger than 1 . On the other hand $3 \cdot(a, b)=(0,0)$ so that its order divides 3 . Hence, this order is 3 .
19. Check that the order of the element $(1,1)$ of $\mathbb{Z} / 4 \times \mathbb{Z} / 9$ is 36 .

Solution: The element $(1,0)$ has order 4 and the element $(0,1)$ has order 9 . Hence, by what has been seen above, we see that $(1,1)=(1,0)+(0,1)$ has order $36=4 \cdot 9$.
20. Find an element of order 6 in $\mathbb{Z} / 4 \times \mathbb{Z} / 9$.

Solution: By an earlier exercise, the element $6 \cdot(1,1)=(2, \cdot 6)$ has order $36 / 6=6$.
21. If $a$ is an element of an (abelian) group $M$, and $N$ is a subgroup of $G$. Suppose $s \cdot a$ and $t \cdot a$ lie in $N$. Show that $p \cdot a$ lies in $N$ where $p$ is the greatest common divisor of $s$ and $t$. (Hint: $p$ can be written as an additive combination of $s$ and $u$.)

Solution: We have integers $S$ and $U$ so that $p=S s+U u$. It follows that $p \cdot a=$ $S \cdot(s \cdot a)+U \cdot(u \cdot a)$. It is clear that the right-hand side lies in $N$, hence the left-hand-side lies in $N$.
22. Suppose that $u$ divides $n$ and $s$ divides $u$. Now if $k$ is a divisor of $n$ so that $n / k=u / s$, show that $s$ divides $k$.

Solution: We write $n=u \cdot v$ and $u=s \cdot t$. We deduce $n=s \cdot t \cdot v$. Now $n=k \cdot(u / s)=k \cdot t$. It follows that $s \cdot t \cdot v=k \cdot t$. Cancelling $t$, we have $s \cdot v=k$ so that $s$ divides $k$.

