Solutions to Assignment 3

1. Check that the only idempotents in \mathbb{Z} are 0 and 1 .

Solution: If k is an integer and $k^{2}=k$, then $k(k-1)=0$. Now, if $a \cdot b=0$ for integers a and b, then either $a=0$ or $b=0$. Thus, if $k \neq 0$ then this means $k-1=0$ or $k=1$.
2. For what integers n can you find idempotents different from 0 and 1 in \mathbb{Z} / n ?

Solution: If a is an element of \mathbb{Z} / n and $a^{2}=a$ in this ring, then treating a as an integer, we have $n \mid\left(a^{2}-a\right)$.

If n is prime, and $n \mid a b$, then either $n \mid a$ or $n \mid b$. So, in this case $n \mid a(a-1)$ means that either $n \mid a$ (i. e. $a=0$ in \mathbb{Z} / n) or $n \mid(a-1)$ (i. e. $a=1$ in \mathbb{Z} / n).

On the other hand, if $n=c \cdot d$ where c and d are positive and have no common factor, then by Chinese Remainder Theorem, one can find an integer a so that $c \mid a$ and $d \mid(a-1)$ (note that a and $a-1$ have no common factor other than 1). In that case, $a^{2}-a$ is divisible by n but neither a nor $a-1$ is divisible by n.
Actually, in this case we can also give an alternate argument which avoids Chinese Rmainder Theorem. Since c and c have no common factor greater than 1, we can write $c A+d B=1$ for suitable integers A and B. We now take $a=c A$ and note that $c \mid a$ and $d \mid(a-1)$.
In summary, the only integers n for which there is an idempotent different from 0 and 1 in \mathbb{Z} / n are composite numbers n.
3. Given any ring R we have a natural ring homomorphism $f: \mathbb{Z} \rightarrow R$. For any element a in R and any integer n, check that $f(n) \cdot a=a \cdot f(n)$.

Solution: The natural homomorphism has the property that $f(1)=1$ the multiplicative identity of R. This shows that $f(1) \cdot a=a=a \cdot f(1)$ Now,

$$
0=f(0)=f(1+(-1))=f(1)+f(-1)
$$

So we see that $f(-1)=-1$, the additive inverse of 1 in R. We have already shown that $(-1) \cdot a=-a=a \cdot(-1)$ for all a in R. Thus, we get $f(-1) \cdot a=-a=a \cdot(-1)$. Similarly,

$$
f(0) \cdot a=0 \cdot a=0=a \cdot 0=a \cdot f(0)
$$

We now claim the following, which we have already proved for $n=1$.

For every positive integer $n, f(n) \cdot a$ is the sum of n copies of a in R. Similarly, $a \cdot f(n)$ is the sum of n copies of a in $R, f(-n) \cdot a$ is the sum of n copies of $-a$ in R and so is $a \cdot f(-n)$.
This can be proved by induction on n. Suppose that we have already proved this for $n-1 \geq 1$. We then write,
$f(n) \cdot a=f((n-1)+1) \cdot a=(f(n-1)+f(1)) \cdot a=f(n-1) \cdot a+f(1) \cdot a=f(n-1) \cdot a+a$
Now the first term on the right is the sum of $(n-1)$ copies of a, hence the right-hand side is the sum of n copies of a. (The crucial step is the use of the distributive law in the third equality.) The other cases are proved in a similar fashion.

The result follows from the claim.
4. Given an element a in a ring R consider the two "new" elements $b=2+3 \cdot a$ and $c=a-5 \cdot a^{3}$. Check that $b \cdot c$ has the form $n_{0}+n_{1} \cdot a+n_{2} \cdot a^{2}+n_{3} \cdot a^{3}+n_{4} \cdot a^{4}$. How did you use the previous exercise in solving this one?

Solution: Using the distributive and associative laws we write

$$
b \cdot c=(2+3 \cdot a) \cdot\left(a-5 \cdot a^{3}\right)=2 \cdot a-10 \cdot a^{3}+3 \cdot a^{2}+3 \cdot a \cdot(-5) \cdot a^{3}
$$

For the last term we will use the previous exercise and then we can simplify to

$$
b \cdot c=2 \cdot a+3 \cdot a^{2}-10 \cdot a^{3}-15 \cdot a^{4}
$$

5. Write down the formulas for addition and multiplication of $p(T)=p_{0}+p_{1} T+\cdots+p_{k} T^{k}$ and $q(T)=q_{0}+q_{1} T+\cdots+q_{l} T^{l}$. Here k and l are non-negative integers and p_{i} 's and q_{j} 's are elements of a ring R.

Solution: We use the distributive law to get

$$
p(T) \cdot q(T)=\sum_{i=0}^{k} \sum_{j=0}^{l} p_{i} T^{i} q_{j} T^{j}
$$

Now use the fact that $a \cdot T=T \cdot a$ for all a in R to get

$$
p(T) \cdot q(T)=\sum_{i=0}^{k} \sum_{j=0}^{l} p_{i} q_{j} T^{i+j} \sum_{n=0}^{k+l}\left(\sum_{i=0}^{k} p_{i} q_{n-i}\right) \cdot T^{n}
$$

The addition rule is much easier

$$
p(T)+q(T)=\sum_{i=0}^{\max (k, l)}\left(p_{i}+q_{i}\right) T^{i}
$$

where by convention we put p_{i} outside the range $i=0, \ldots, k$ to be 0 and q_{j} outside the range $j=0, \ldots, l$ to be 0 .
6. (Starred) For a ring S and a fixed element s in S, define a map $D_{s}(a)=s \cdot a-a \cdot s$. This is not a ring homomorphism. However, check that $D_{s}(a+b)=D_{s}(a)+D_{s}(b)$ and (more importantly) $D_{s}(a \cdot b)=a \cdot D_{s}(b)+D_{s}(a) \cdot b$.

Solution: We check, using the distributive law and commutativity of addition, that

$$
D_{s}(a+b)=s \cdot(a+b)-(a+b) \cdot s=s \cdot a-a \cdot s+s \cdot b-b \cdot s=D_{s}(a)+D_{s}(b)
$$

Similarly, using the associativity of multiplication and commutativity of addition, we have
$D_{s}(a \cdot b)=s \cdot(a \cdot b)-(a \cdot b) \cdot s=(s \cdot a) \cdot b-(a \cdot s) \cdot b+a \cdot(s \cdot b)-a \cdot(b \cdot s)=D_{s}(a) \cdot b+a \cdot D_{s}(b)$
7. Suppose that R is commutative and that S is an R-algebra. Show that giving an element of S is the same as giving a homomorphism $R[T] \rightarrow S$ where the map is the natural one on R.

Solution: We are given that there is a homomorphism $R \rightarrow S$ so that the image of R (multiplicatively) commutes with all elements of S.
Given an element s in S, we can define a homomorphism $R[T] \rightarrow S$ by sending a polynomial $p(T)=a_{0}+a_{1} T+\cdots+a_{k} T^{k}$ to the element $a_{0}+a_{1} \cdot s+\cdots+a_{k} \cdot s^{k}$. Using the above formulas for addition and multiplication of polynomials one can check that this is a homomorphism. Note that T is mapped to s and that the identity $a \cdot T=T \cdot a$ is preserved under this mapping.

Conversely, given a homomorphism $R[T] \rightarrow S$ which is the given homomorphism on the elements of R (which are the "constant" polynomials in $R[T]$), we can associate to this homomorphism the element s which is the element to which T is mapped by the homomorphism. It then follows that T^{k} is mapped to s^{k} and thenc that the polynomial $p(T)$ as above is mapped exactly as given above.
8. Suppose $a \cdot b \neq b \cdot a$ in R, then show that the map $R[T] \rightarrow R$ which sends T to a is *not* a homomorphism.

Solution: Let us denote this map by f.
In order to be a homomorphism, it must preserve multiplication. Now, the image of T is a and the image of b is b. However, the product

$$
f(T) \cdot f(b)=a \cdot b \neq b \cdot a=f(b \cdot T)=f(T \cdot b)
$$

is not preserved.
9. Check that point-wise addition and multiplication make $\operatorname{Map}(X, R)$ into a ring for any set X

Solution: The required laws for addition and multiplication only need to be check point-wise. These point-wise cases are a consequence of the same laws for R.
10. For each element a in R we can consider the "constant" function \underline{a} which sends every element of X to a. Show that this gives a ring homomorphism $R \rightarrow \operatorname{Map}(X, R)$.

Solution: We just check that the point-wise addition and multiplication of constant functions results in constant functions!
11. Check that evaluation gives a ring homomorphism $R[T] \rightarrow \operatorname{Map}(R, R)$ when R is commutative.

Solution: We note that T maps to the identity map $i: R \rightarrow R$. This gives an element of $\operatorname{Map}(R, R)$ and thus, as seen above, this gives a homomorphism $R[T] \rightarrow$ $\operatorname{Map}(R, R)$. We only need to check that this homomorphism is the "evaluation map". By pointwise multiplication we see that T^{k} goes to the function that sends b to $i(b)^{k}=b^{k}$. Now a polynomial $p(T)=a_{0}+\cdots+a_{k} T^{k}$ goes to the function that sends b to

$$
a_{0}+a_{1} \cdot i(b)+\cdots a_{k} i(b)^{k}=a_{0}+a_{1} \cdot b+\cdots a_{k} b^{k}
$$

In other words, this is the evaluation map.
12. (Starred) Does the above statement hold if R is not commutative? Give an example to justify your answer.

Solution: Suppose $a \cdot b \neq b \cdot a$ in R. If $i: R \rightarrow R$ denotes the identity map and $a: R \rightarrow R$ denotes the constant map with value a, then $a \cdot i-i \cdot a$ is a non-zero map it has a non-zero value on b. However, $a \cdot T=T \cdot a$ in $R[T]$. Hence, the evaluation map is not a homomorphism.
13. How many elements are there in the set $\operatorname{Map}(\mathbb{Z} / n, \mathbb{Z} / n)$?

Solution: Since we are only looking at set-theoretic maps, only the cardinality of the range and domain matters. Hence, the answer is n^{n}.
14. For $n=3,4,5,6$, find an explicit non-zero polynomial $p(T)$ in $(\mathbb{Z} / n)[T]$ for which $e_{p}(k)=$ 0 for *every* element k in \mathbb{Z} / n.

Solution: Consider the polynomial

$$
p(T)=T \cdot(T-1) \cdots(T-5)
$$

It is clear that this polynomial vanishes on every element of \mathbb{Z} / n for $n=3,4,5,6$. Moreover, the coefficient of T^{6} in $p(T)$ is 1 and hence it is a non-zero polynomial.
15. Find an explicit non-zero polynomial $p(T)$ in $(\mathbb{Z} / n)[T]$ for which $e_{p}(k)=0$ for *every* element k in \mathbb{Z} / n.

Solution: Consider the polynomial

$$
p(T)=T \cdot(T-1) \cdots(T-(n-1))
$$

It is clear that this polynomial vanishes on every element of \mathbb{Z} / n. Moreover, the coefficient of T^{n} in $p(T)$ is 1 and hence it is a non-zero polynomial.

