Abelian Groups - Part 1

1. Given that f and g are endomorphisms of an abelian group M. Define $h(a)=f(a)+g(a)$ for every a in M. Check that h is an endomorphism of the abelian group M.
2. Given that f and g are endomorphisms of an abelian group M. Define $h(a)=f(g(a))$ for every a in M. Check that h is an endomorphism of the abelian group M.
3. The $\underline{0}$ endomorphism of an abelian group M sends every element of M to 0 . The $\underline{1}$ endomorphism of M is the identity map of M to itself. With the above definitions of addition and multiplications, check that $\operatorname{End}(M)$ is a ring.
4. Consider the natural ring homomorphism $\eta: \mathbb{Z} \rightarrow \operatorname{End}(M)$ given that the latter is a ring. Describe the element $\eta(3)$ and $\eta(-2)$. How do you prove that this description is correct?
5. Use the (left) distributive law in a ring R to show that $x \mapsto a \cdot x$ is an endomorphism of $(R,+)$.
6. Call the map in the previous exercise ℓ_{a}. Use associativity of multiplication in R to show that $\ell_{a} \circ \ell_{b}=\ell_{a \cdot b}$.
7. Use the right distributive law in R to show that $\ell_{a+b}=\ell_{a}+\ell_{b}$ where the right-hand side is addition of endomorphisms of $(R,+)$.
8. Use the additive identity law to show that ℓ_{1} is the identity endomorphism of $(R,+)$.
9. If p is any integer and a an element of an abelian group M, then show that the order of $p \cdot a$ divides the order m of a.
10. In the above situation, if p and m have no common factor, then show that the order of $p \cdot a$ is m.
11. In the above situation, Show that the element $k \cdot a$ has order exactly m / k.
12. Combine the above two exercises to show that if the order of $p \cdot a$ is m / k where k the greatest common divisor of p and m.
13. Given two elements a and b in an abelian group M with orders m and n respectively. If m and n have no common factor then show that if some multiple $p \cdot a$ equals some multiple $q \cdot b$ then both of these are the 0 element of M. (Hint: The order of $p \cdot a$ is a divisor of m and that of $q \cdot b$ is a divisor of n.)
14. In the above situation, if m and n have no common factor then the order of $a+b$ is $m \cdot n$.
15. Given positive integers m and n, show that there is a divisor k of m and a divisor l of n so that:
16. k and l have no common factor.
17. The least common multiple of m and n is $k \cdot l$.
(Hint: Let k be product of those prime powers dividing m that are the same as the prime powers dividing the least common multiple of m and n. Let l be the product of the remaining prime powers dividing the l.c.m. of m and n.)
18. With a, b in M as above and m, n, k and l positive integers as above, show that $(m / k) \cdot a+(n / l) \cdot b$ has order equal to the least common multiple of the m and n.
19. (Starred) Given a and b in M of order m and n respectively, show that the order of any element of the form $p \cdot a+q \cdot b$ divides the least common multiple of m and n.
20. Check that the order of every non-zero element of $\mathbb{Z} / 3 \times \mathbb{Z} / 3$ is 3 .
21. Check that the order of the element $(1,1)$ of $\mathbb{Z} / 4 \times \mathbb{Z} / 9$ is 36 .
22. Find an element of order 6 in $\mathbb{Z} / 4 \times \mathbb{Z} / 9$.
23. If a is an element of an (abelian) group M, and N is a subgroup of G. Suppose $s \cdot a$ and $t \cdot a$ lie in N. Show that $p \cdot a$ lies in N where p is the greatest common divisor of s and t. (Hint: p can be written as an additive combination of s and u.)
24. Suppose that u divides n and s divides u. Now if k is a divisor of n so that $n / k=u / s$, show that s divides k.
