Solutions to Quiz 2

1. Give examples of $p \times p$ matrices over integers:
(a) Matrices a and b that are different from each other and different from 0 such that $a \cdot b=0$. (In other words, a and b are zero divisors.)

Solution: We have

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

(b) A matrix n different from 0 such that $n^{2}=0$.

Solution: We have

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

(c) A matrix p different from 0 or 1 such that $p^{2}=p$.

Solution: We have

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

(d) Matrices u and v different from 1 such that $u \cdot v=1$.

Solution: We have

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

